August  2014, 34(8): i-iii. doi: 10.3934/dcds.2014.34.8i

Introduction

1. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna

Published  January 2014

We survey the content of the present special issue devoted to nonlinear water waves.
Citation: Adrian Constantin. Introduction. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : i-iii. doi: 10.3934/dcds.2014.34.8i
References:
[1]

B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton University Press, Princeton, NJ, 2003.  Google Scholar

[2]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558. Google Scholar

[3]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475.  Google Scholar

[4]

A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.  Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  Google Scholar

[6]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.  Google Scholar

[7]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384.  Google Scholar

[8]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.  Google Scholar

[9]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.  Google Scholar

[10]

E. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384.  Google Scholar

[11]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445. Google Scholar

[12]

D. Henry and R. Ivanov, One-dimensional weakly nonlinear model equations for Rossby waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3025-3034. doi: 10.3934/dcds.2014.34.3025.  Google Scholar

[13]

H.-C. Hsu, Recovering surface profiles of solitary waves on a uniform stream from pressure measurements, Discr. Cont. Dyn. Syst. A, 34 (2014), 3035-3043. doi: 10.3934/dcds.2014.34.3035.  Google Scholar

[14]

D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories, Discr. Cont. Dyn. Syst. A, 34 (2014), 3045-3060. doi: 10.3934/dcds.2014.34.3045.  Google Scholar

[15]

M. Kovalyov, On the nature of large and rogue waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3061-3093. doi: 10.3934/dcds.2014.34.3061.  Google Scholar

[16]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Discr. Cont. Dyn. Syst. A, 34 (2014), 3095-3107. doi: 10.3934/dcds.2014.34.3095.  Google Scholar

[17]

C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3109-3123. doi: 10.3934/dcds.2014.34.3109.  Google Scholar

[18]

B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discr. Cont. Dyn. Syst. A, 34 (2014), 3125-3133. doi: 10.3934/dcds.2014.34.3125.  Google Scholar

[19]

A. Nachbin and R. Ribeiro-Junior, A boundary integral formulation for particle trajectories in Stokes waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3135-3153. doi: 10.3934/dcds.2014.34.3135.  Google Scholar

[20]

H. Okamoto, T. Sakajo and M. Wunsch, Steady-states and traveling-wave solutions of the generalized Constantin-Lax-Majda equation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3155-3170. doi: 10.3934/dcds.2014.34.3155.  Google Scholar

[21]

K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918.  Google Scholar

[22]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  Google Scholar

[23]

M. Stiassnie and R. Stuhlmeier, Progressive waves on a blunt interface, Discr. Cont. Dyn. Syst. A, 34 (2014), 3171-3182. doi: 10.3934/dcds.2014.34.3171.  Google Scholar

[24]

R. Stuhlmeier, Internal Gerstner waves on a sloping bed, Discr. Cont. Dyn. Syst. A, 34 (2014), 3183-3192. doi: 10.3934/dcds.2014.34.3183.  Google Scholar

[25]

J. F. Toland, Energy-minimising parallel flows with prescribed vorticity distribution, Discr. Cont. Dyn. Syst. A, 34 (2014), 3193-3210. doi: 10.3934/dcds.2014.34.3193.  Google Scholar

[26]

J. F. Toland, Non-existence of global energy minimisers in Stokes waves problems, Discr. Cont. Dyn. Syst. A, 34 (2014), 3211-3217. doi: 10.3934/dcds.2014.34.3211.  Google Scholar

[27]

V. Vasan and K. Oliveras, Pressure beneath a traveling wave with constant vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3219-3239. doi: 10.3934/dcds.2014.34.3219.  Google Scholar

[28]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Local bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3241-3285. doi: 10.3934/dcds.2014.34.3241.  Google Scholar

[29]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Global bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3287-3315. doi: 10.3934/dcds.2014.34.3287.  Google Scholar

show all references

References:
[1]

B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton University Press, Princeton, NJ, 2003.  Google Scholar

[2]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558. Google Scholar

[3]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475.  Google Scholar

[4]

A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.  Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  Google Scholar

[6]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.  Google Scholar

[7]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384.  Google Scholar

[8]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.  Google Scholar

[9]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.  Google Scholar

[10]

E. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384.  Google Scholar

[11]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445. Google Scholar

[12]

D. Henry and R. Ivanov, One-dimensional weakly nonlinear model equations for Rossby waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3025-3034. doi: 10.3934/dcds.2014.34.3025.  Google Scholar

[13]

H.-C. Hsu, Recovering surface profiles of solitary waves on a uniform stream from pressure measurements, Discr. Cont. Dyn. Syst. A, 34 (2014), 3035-3043. doi: 10.3934/dcds.2014.34.3035.  Google Scholar

[14]

D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories, Discr. Cont. Dyn. Syst. A, 34 (2014), 3045-3060. doi: 10.3934/dcds.2014.34.3045.  Google Scholar

[15]

M. Kovalyov, On the nature of large and rogue waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3061-3093. doi: 10.3934/dcds.2014.34.3061.  Google Scholar

[16]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Discr. Cont. Dyn. Syst. A, 34 (2014), 3095-3107. doi: 10.3934/dcds.2014.34.3095.  Google Scholar

[17]

C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3109-3123. doi: 10.3934/dcds.2014.34.3109.  Google Scholar

[18]

B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discr. Cont. Dyn. Syst. A, 34 (2014), 3125-3133. doi: 10.3934/dcds.2014.34.3125.  Google Scholar

[19]

A. Nachbin and R. Ribeiro-Junior, A boundary integral formulation for particle trajectories in Stokes waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3135-3153. doi: 10.3934/dcds.2014.34.3135.  Google Scholar

[20]

H. Okamoto, T. Sakajo and M. Wunsch, Steady-states and traveling-wave solutions of the generalized Constantin-Lax-Majda equation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3155-3170. doi: 10.3934/dcds.2014.34.3155.  Google Scholar

[21]

K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918.  Google Scholar

[22]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  Google Scholar

[23]

M. Stiassnie and R. Stuhlmeier, Progressive waves on a blunt interface, Discr. Cont. Dyn. Syst. A, 34 (2014), 3171-3182. doi: 10.3934/dcds.2014.34.3171.  Google Scholar

[24]

R. Stuhlmeier, Internal Gerstner waves on a sloping bed, Discr. Cont. Dyn. Syst. A, 34 (2014), 3183-3192. doi: 10.3934/dcds.2014.34.3183.  Google Scholar

[25]

J. F. Toland, Energy-minimising parallel flows with prescribed vorticity distribution, Discr. Cont. Dyn. Syst. A, 34 (2014), 3193-3210. doi: 10.3934/dcds.2014.34.3193.  Google Scholar

[26]

J. F. Toland, Non-existence of global energy minimisers in Stokes waves problems, Discr. Cont. Dyn. Syst. A, 34 (2014), 3211-3217. doi: 10.3934/dcds.2014.34.3211.  Google Scholar

[27]

V. Vasan and K. Oliveras, Pressure beneath a traveling wave with constant vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3219-3239. doi: 10.3934/dcds.2014.34.3219.  Google Scholar

[28]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Local bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3241-3285. doi: 10.3934/dcds.2014.34.3241.  Google Scholar

[29]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Global bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3287-3315. doi: 10.3934/dcds.2014.34.3287.  Google Scholar

[1]

Jing Cui, Guangyue Gao, Shu-Ming Sun. Controllability and stabilization of gravity-capillary surface water waves in a basin. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021158

[2]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[3]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[4]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[5]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[6]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[7]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287

[8]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[9]

Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927

[10]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[13]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[14]

Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997

[15]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[16]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[17]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[18]

Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183

[19]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[20]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]