\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Introduction

Abstract Related Papers Cited by
  • We survey the content of the present special issue devoted to nonlinear water waves.
    Mathematics Subject Classification: Primary: 35Q31, 35Q35; Secondary: 76D33.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton University Press, Princeton, NJ, 2003.

    [2]

    D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558.

    [3]

    D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475.

    [4]

    A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.

    [5]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.

    [6]

    A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.

    [7]

    A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384.

    [8]

    A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.

    [9]

    A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.

    [10]

    E. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384.

    [11]

    F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445.

    [12]

    D. Henry and R. Ivanov, One-dimensional weakly nonlinear model equations for Rossby waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3025-3034.doi: 10.3934/dcds.2014.34.3025.

    [13]

    H.-C. Hsu, Recovering surface profiles of solitary waves on a uniform stream from pressure measurements, Discr. Cont. Dyn. Syst. A, 34 (2014), 3035-3043.doi: 10.3934/dcds.2014.34.3035.

    [14]

    D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories, Discr. Cont. Dyn. Syst. A, 34 (2014), 3045-3060.doi: 10.3934/dcds.2014.34.3045.

    [15]

    M. Kovalyov, On the nature of large and rogue waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3061-3093.doi: 10.3934/dcds.2014.34.3061.

    [16]

    T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Discr. Cont. Dyn. Syst. A, 34 (2014), 3095-3107.doi: 10.3934/dcds.2014.34.3095.

    [17]

    C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3109-3123.doi: 10.3934/dcds.2014.34.3109.

    [18]

    B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discr. Cont. Dyn. Syst. A, 34 (2014), 3125-3133.doi: 10.3934/dcds.2014.34.3125.

    [19]

    A. Nachbin and R. Ribeiro-Junior, A boundary integral formulation for particle trajectories in Stokes waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3135-3153.doi: 10.3934/dcds.2014.34.3135.

    [20]

    H. Okamoto, T. Sakajo and M. Wunsch, Steady-states and traveling-wave solutions of the generalized Constantin-Lax-Majda equation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3155-3170.doi: 10.3934/dcds.2014.34.3155.

    [21]

    K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918.

    [22]

    P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.

    [23]

    M. Stiassnie and R. Stuhlmeier, Progressive waves on a blunt interface, Discr. Cont. Dyn. Syst. A, 34 (2014), 3171-3182.doi: 10.3934/dcds.2014.34.3171.

    [24]

    R. Stuhlmeier, Internal Gerstner waves on a sloping bed, Discr. Cont. Dyn. Syst. A, 34 (2014), 3183-3192.doi: 10.3934/dcds.2014.34.3183.

    [25]

    J. F. Toland, Energy-minimising parallel flows with prescribed vorticity distribution, Discr. Cont. Dyn. Syst. A, 34 (2014), 3193-3210.doi: 10.3934/dcds.2014.34.3193.

    [26]

    J. F. Toland, Non-existence of global energy minimisers in Stokes waves problems, Discr. Cont. Dyn. Syst. A, 34 (2014), 3211-3217.doi: 10.3934/dcds.2014.34.3211.

    [27]

    V. Vasan and K. Oliveras, Pressure beneath a traveling wave with constant vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3219-3239.doi: 10.3934/dcds.2014.34.3219.

    [28]

    S. Walsh, Steady stratified periodic gravity waves with surface tension: Local bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3241-3285.doi: 10.3934/dcds.2014.34.3241.

    [29]

    S. Walsh, Steady stratified periodic gravity waves with surface tension: Global bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3287-3315.doi: 10.3934/dcds.2014.34.3287.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return