\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Computing of B-series by automatic differentiation

Abstract Related Papers Cited by
  • We present an algorithm based on Automatic Differentiation for computing general B-series of vector fields $f\colon \mathbb{R}^n\rightarrow \mathbb{R}^n$. The algorithm has a computational complexity depending linearly on $n$, and provides a practical way of computing B-series up to a moderately high order $d$. Compared to Automatic Differentiation for computing Taylor series solutions of differential equations, the proposed algorithm is more general, since it can compute any B-series. However the computational cost of the proposed algorithm grows much faster in $d$ than a Taylor series method, thus very high order B-series are not tractable by this approach.
    Mathematics Subject Classification: Primary: 65D25, 65L05, 65L06; Secondary: 65Y20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Moan, A. Murua, G. Quispel, M. Sofroniou and G. Spaletta, Symplectic elementary differential Runge-Kutta methods, Numerische Mathematik, (2004).

    [2]

    C. Simó, On the analytical and numerical approximation of invariant manifolds, Les Méthodes Modernes de la Mecánique Céleste, (1990), 285-329.

    [3]

    G. Li and F. Ruskey, The advantages of forward thinking in generating rooted and free trees, 10th annual ACM-SIAM symposium on discrete algorithms, (1999), 939-940.

    [4]

    A. Danis, "Parameter Estimation, Set Valued Numerics," in Preparation, Ph.D thesis: Uppsala University, 2013.

    [5]

    F. BarthaAd-trees software, http://www2.math.uu.se/ warwick/CAPA/publications/supplements/Bseries.tar.gz.

    [6]

    S. FinchTwo asymptotic series, http://www.people.fas.harvard.edu/ sfinch/csolve/asym.pdf.

    [7]

    C. Bendtsen and O. Stauning, FADBAD, a flexible C++ package for automatic differentiation, Tech. Rep. IMM-REP-1996-17, TU Denmark, DK-2800 Lyngby, Denmark, (1996).

    [8]

    Computer Assisted Proofs in Dynamics GroupCAPD Library - a C++ package for rigorous numerics, http://capd.ii.uj.edu.pl.

    [9]

    J. G. Siek, L. Q. Leeand A. Lumsdaine, "The Boost Graph Library User Guide and Reference Manual," Addison-Wesley Professional, 2001.

    [10]

    K. Ebrahimi-Fard and D. ManchonThe magnus expansion, trees and Knuth's rotation correspondence, preprint, arXiv:1203.2878.

    [11]

    R. E. Moore, J. A. Davidson, H. R. Jaske and S. Shayer, DIFEQ integration routine - user's manual, Tech. Rep. LMSC 6-90-64-6, Lockheed Missiles and Space Co., Palo Alto, CA, (1964).

    [12]
    [13]

    A. Abad, R. Barrio, F. Blesa and M. Rodríguez, Algorithm 924: TIDES, a Taylor series Integrator for Differential EquationS, ACM Trans. Math. Software, 39 (2012), Art. 5, 28pp.doi: 10.1145/2382585.2382590.

    [14]

    M. Berz, Algorithms for higher derivatives in many variables with applications to beam physics, SIAM Automatic Differentiation of Algorithms (Breckenridge, CO, 1991), (1991), 147-156.

    [15]

    J. C. Butcher, An algebraic theory of integration methods, Math. Comp., 26 (1972), 79-106.doi: 10.1090/S0025-5718-1972-0305608-0.

    [16]

    F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices, 2001 (2001), 395-408.doi: 10.1155/S1073792801000198.

    [17]

    P. Chartier, E. Hairer and G. Vilmart, Numerical integrators based on modified differential equations, Math. Comp., 76 (2007), 1941-1953.doi: 10.1090/S0025-5718-07-01967-9.

    [18]

    A. Griewank, "Evaluating Derivatives," Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

    [19]

    A. Griewank, J. Utke and A. Walther, Evaluating higher derivative tensors by forward propagation of univariate Taylor series, Math. Comp., 69 (2000), 1117-1130.doi: 10.1090/S0025-5718-00-01120-0.

    [20]

    E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration," Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2006.

    [21]

    À. Jorba and M. Zou, A software package for the numerical integration of ODEs by means of high-order Taylor methods, Experiment. Math., 14 (2005), 99-117.doi: 10.1080/10586458.2005.10128904.

    [22]

    J. M. Plotkin and J. W. Rosenthal, How to obtain an asymptotic expansion of a sequence from an analytic identity satisfied by its generating function, J. Austral. Math. Soc. Ser. A, 56 (1994), 131-143.doi: 10.1017/S1446788700034777.

    [23]

    W. Tucker, "Validated Numerics," Princeton University Press, Princeton, NJ, 2011.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return