\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Numerical simulation of nonlinear dispersive quantization

Abstract Related Papers Cited by
  • When posed on a periodic domain in one space variable, linear dispersive evolution equations with integral polynomial dispersion relations exhibit strikingly different behaviors depending upon whether the time is rational or irrational relative to the length of the interval, thus producing the Talbot effect of dispersive quantization and fractalization. The goal here is to show that these remarkable phenomena extend to nonlinear dispersive evolution equations. We will present numerical simulations, based on operator splitting methods, of the nonlinear Schrödinger and Korteweg--deVries equations with step function initial data and periodic boundary conditions. For the integrable nonlinear Schrödinger equation, our observations have been rigorously confirmed in a recent paper of Erdoǧan and Tzirakis, [10].
    Mathematics Subject Classification: Primary: 35Q53, 35Q55, 65M12; Secondary: 65M06, 65T50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. V. Berry, Quantum fractals in boxes, J. Phys. A, 29 (1996), 6617-6629.doi: 10.1088/0305-4470/29/20/016.

    [2]

    M. V. Berry, I. Marzoli and W. Schleich, Quantum carpets, carpets of light, Physics World, 14 (2001), 39-44.

    [3]

    J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.doi: 10.1007/BF01896020.

    [4]

    J. Bourgain, Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal., 3 (1993), 157-178.doi: 10.1007/BF01896021.

    [5]

    J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.doi: 10.1007/BF01895688.

    [6]

    G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London, 469 (2012), 20120407, 21 pp.doi: 10.1098/rspa.2012.0407.

    [7]

    C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics," 3rd ed., Springer Verlag, New York, 2010.doi: 10.1007/978-3-642-04048-1.

    [8]

    P. G. Drazin and R. S. Johnson, "Solitons: An Introduction," Cambridge University Press, Cambridge, 1989.

    [9]

    M. B. Erdoǧan and N. TzirakisGlobal smoothing for the periodic KdV evolution, Internat. Math. Res. Notices, to appear.

    [10]

    M. B. Erdoǧan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, preprint, arXiv:1303.3604, 2013.

    [11]

    M. B. Erdoǧan, N. Tzirakis and V. Zharnitsky, Nearly linear dynamics of nonlinear dispersive waves, Physica D, 240 (2011), 1325-1333.doi: 10.1016/j.physd.2011.05.009.

    [12]

    H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem, Expo. Math., 28 (2010), 385-394.doi: 10.1016/j.exmath.2010.03.001.

    [13]

    H. Holden, K. H. Karlsen, K.-A. Lie and N. H. Risebro, "Splitting Methods for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs," European Mathematical Society Publ., Zürich, 2010.doi: 10.4171/078.

    [14]

    H. Holden, K. H. Karlsen and N. H. Risebro, Operator splitting methods for generalized Korteweg-de Vries equations, J. Comput. Phys., 153 (1999), 203-222.doi: 10.1006/jcph.1999.6273.

    [15]

    H. Holden, K. H. Karlsen, N. H. Risebro and T. Tao, Operator splitting for the KdV equation, Math. Comp., 80 (2011), 821-846.doi: 10.1090/S0025-5718-2010-02402-0.

    [16]

    H. Holden, U. Koley and N. H. Risebro, Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation, preprint, arXiv:1208.6410v1, 2012.

    [17]

    H. Holden, C. Lubich and N. H. Risebro, Operator splitting for partial differential equations with Burgers nonlinearity, Math. Comp., 82 (2013), 173-185.doi: 10.1090/S0025-5718-2012-02624-X.

    [18]

    L. Kapitanski and I. Rodnianski, Does a quantum particle know the time?, in"Emerging Applications of Number Theory" (eds. D. Hejhal, J. Friedman, M. C. Gutzwiller and A. M. Odlyzko), IMA Volumes in Mathematics and its Applications, 109, Springer Verlag, New York, (1999), 355-371.doi: 10.1007/978-1-4612-1544-8_14.

    [19]

    P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-deVries equation I, II, III, Commun. Pure Appl. Math., 36 (1983), 253-290.doi: 10.1002/cpa.3160360302.

    [20]

    C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp., 77 (2008), 2141-2153.doi: 10.1090/S0025-5718-08-02101-7.

    [21]

    K. D. T.-R. McLaughlin and N. J. E. Pitt, On ringing effects near jump discontinuities for periodic solutions to dispersive partial differential equations, preprint, arXiv:1107.1571v1, 2011.

    [22]

    P. J. Olver, Dispersive quantization, Amer. Math. Monthly, 117 (2010), 599-610.doi: 10.4169/000298910X496723.

    [23]

    K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis, in "Progress in Approximation Theory," Springer Ser. Comput. Math., 19, Springer, New York, (1992), 353-402.doi: 10.1007/978-1-4612-2966-7_16.

    [24]

    K. Oskolkov, Schrödinger equation and oscillatory Hilbert transforms of second degree, J. Fourier Anal. Appl., 4 (1998), 341-356.doi: 10.1007/BF02476032.

    [25]

    I. Rodnianski, Fractal solutions of the Schrödinger equation, Contemp. Math., 255 (2000), 181-187.doi: 10.1090/conm/255/03981.

    [26]

    J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd edition, Springer-Verlag, New York, 1994.

    [27]

    H. F. Talbot, Facts related to optical science. No. IV, Philos. Mag., 9 (1836), 401-407.doi: 10.1080/14786443608649032.

    [28]

    M. Taylor, The Schrödinger equation on spheres, Pacific J. Math., 209 (2003), 145-155.doi: 10.2140/pjm.2003.209.145.

    [29]

    I. M. Vinogradov, "The Method of Trigonometrical Sums in the Theory of Numbers," Dover Publ., Mineola, NY, 2004.

    [30]

    G. B. Whitham, "Linear and Nonlinear Waves," John Wiley & Sons, New York, 1974.

    [31]

    Y. Zhou, Uniqueness of weak solution of the KdV equation, Internat. Math. Res. Notices, 1997 (1997), 271-283.doi: 10.1155/S1073792897000202.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return