\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of the rhomboidal symmetric-mass orbit

Abstract Related Papers Cited by
  • We study the rhomboidal symmetric-mass $1$, $m$, $1$, $m$ four-body problem in the four-degrees-of-freedom setting, where $0 < m \leq 1$. Under suitable changes of variables, isolated binary collisions at the origin are regularizable. Analytic existence of the orbit in the four-degrees-of-freedom setting is established. We analytically extend a method of Roberts to perform linear stability analysis in this setting. Linear stability is analytically reduced to computing three entries of a $4 \times 4$ matrix related to the monodromy matrix. Additionally, it is shown that the four-degrees-of-freedom setting has a two-degrees-of-freedom invariant set, and linear stability results in the subset comes ``for free'' from the calculation in the full space. The final numerical analysis shows that the four-degrees-of-freedom orbit is linearly unstable except for a very small interval about $m = 0.4$, whereas the two-degrees-of-freedom orbit is linearly stable for all but very small values of $m$.
    Mathematics Subject Classification: Primary: 70F16; Secondary: 37N05, 37J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. F. Bakker, S. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, J. Math. Anal. Appl., 392 (2012), 136-147.doi: 10.1016/j.jmaa.2012.03.022.

    [2]

    L. F. Bakker, T. Ouyang, D. Yan and S. Simmons, Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, Celestial Mech. Dynam. Astronom., 110 (2011), 271-290.doi: 10.1007/s10569-011-9358-y.

    [3]

    L. F. Bakker, T. Ouyang, D. Yan and S. Simmons, Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623], Celestial Mech. Dynam. Astronom., 112 (2012), 459-460.doi: 10.1007/s10569-012-9402-6.

    [4]

    L. F. Bakker, T. Ouyang, D. Yan, S. Simmons and G. E. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164.doi: 10.1007/s10569-010-9298-y.

    [5]

    A. Bounemoura, Generic super-exponential stability of invariant tori in Hamiltonian systems, Ergodic Theory Dynam. Systems, 31 (2011), 1287-1303.doi: 10.1017/S0143385710000441.

    [6]

    M. Hénon, Stability of interplay oribts, Cel. Mech., 15 (1977), 243-261.

    [7]

    J. Hietarinta and S. Mikkola, Chaos in the one-dimensional gravitational three-body problem, Chaos, 3 (1993), 183-203.doi: 10.1063/1.165984.

    [8]

    Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, 207, Birkhäuser Verlag, Basel, 2002.doi: 10.1007/978-3-0348-8175-3.

    [9]

    R. Martínez, On the existence of doubly symmetric "Schubart-like'' periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.doi: 10.3934/dcdsb.2012.17.943.

    [10]

    K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem, 2nd edition, Applied Mathematical Sciences, 90, Springer, New York, 2009.

    [11]

    R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.doi: 10.3934/dcdsb.2008.10.609.

    [12]

    T. Ouyang and D. Yan, Periodic solutions with alternating singularities in the collinear four-body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 229-239.doi: 10.1007/s10569-010-9325-z.

    [13]

    T. Ouyang, D. Yan and S. Simmons, Periodic solutions with singularities in two dimensions in the $n$-body problem, Rocky Mtn. J. Math., 42 (2012), 1601-1614.doi: 10.1216/RMJ-2012-42-5-1601.

    [14]

    G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.doi: 10.1017/S0143385707000284.

    [15]

    A. E. Roy and B. A. Steves, The Caledonian symmetrical double binary four-body problem. I. Surfaces of zero-velocity using the energy integral, Celestial Mech. Dynam. Astronom., 78 (2000), 299-318.doi: 10.1023/A:1011102815021.

    [16]

    J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astr. Nachr., 283 (1956), 17-22.doi: 10.1002/asna.19562830105.

    [17]

    M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.doi: 10.1007/s00205-010-0334-6.

    [18]

    C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

    [19]

    C. Simó, New families of solutions in $N$-body problems, in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 101-115.

    [20]

    A. Sivasankaran, B. A. Steves and W. L. Sweatman, A global regularisation for integrating the Caledonian symmetric four-body problem, Celestial Mech. Dynam. Astronom., 107 (2010), 157-168.doi: 10.1007/s10569-010-9270-x.

    [21]

    W. L. Sweatman, The symmetrical one-dimensional Newtonian four-body problem: A numerical investigation, Celestial Mech. Dynam. Astronom., 82 (2002), 179-201.doi: 10.1023/A:1014599918133.

    [22]

    W. L. Sweatman, A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem, Celestial Mech. Dynam. Astronom., 94 (2006), 37-65.doi: 10.1007/s10569-005-2289-8.

    [23]

    A. Venturelli, A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.doi: 10.3934/dcdsb.2008.10.699.

    [24]

    J. Waldvogel, The rhomboidal symmetric four-body problem, Celestial Mech. Dynam. Astronom., 113 (2012), 113-123.doi: 10.1007/s10569-012-9414-2.

    [25]

    D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl., 388 (2012), 942-951.doi: 10.1016/j.jmaa.2011.10.032.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return