\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the integral systems with negative exponents

Abstract Related Papers Cited by
  • This paper is concerned with the integral system $$\left \{ \begin{array}{ll} &u(x)=\int_{R^n}\frac{|x-y|^\lambda dy}{v^q(y)},\quad u>0~in~R^n,\\ &v(x)=\int_{R^n}\frac{|x-y|^\lambda dy}{u^p(y)},\quad v>0~in~R^n, \end{array} \right. $$ where $n \geq 1$, $p,q,\lambda \neq 0$. Such an integral system appears in the study of the conformal geometry. We obtain several necessary conditions for the existence of the $C^1$ positive entire solutions, particularly including the critical condition $$ \frac{1}{p-1}+\frac{1}{q-1}=\frac{\lambda}{n}, $$ which is the necessary and sufficient condition for the invariant of the system and some energy functionals under the scaling transformation. The necessary condition $\frac{1}{p-1}+\frac{1}{q-1}=\frac{\lambda}{n}$ can be relaxed to another weaker one $\min\{p,q\}>\frac{n+\lambda}{\lambda}$ for the system with double bounded coefficients. In addition, we classify the radial solutions in the case of $p=q$ as the form $$ u(x)=v(x)=a(b^2+|x-x_0|^2)^{\frac{\lambda}{2}} $$ with $a,b>0$ and $x_0 \in R^n$. Finally, we also deduce some analogous necessary conditions of existence for the weighted system.
    Mathematics Subject Classification: 45E10, 45G15, 45M05, 45M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.doi: 10.1007/s00032-008-0090-3.

    [2]

    A. Chang and M. del Mar Gonzalez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.doi: 10.1016/j.aim.2010.07.016.

    [3]

    W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8.

    [4]

    W. Chen and C. Li, Regularity of solutions for a system of integral equations, Commun. Pure Appl. Anal., 4 (2005), 1-8.doi: 10.3934/cpaa.2005.4.1.

    [5]

    W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184.doi: 10.3934/dcds.2009.24.1167.

    [6]

    W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65.doi: 10.1081/PDE-200044445.

    [7]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116.

    [8]

    Z. Cheng and C. Li, An extended discrete Hardy-Littlewood-Sobolev inequality, Discrete Contin. Dyn. Syst., 34 (2014), 1951-1959.doi: 10.3934/dcds.2014.34.1951.

    [9]

    Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents, J. Differential Equations, 246 (2009), 216-234.doi: 10.1016/j.jde.2008.06.027.

    [10]

    J. Davila, I. Flores and I. Guerra, Multiplicity of solutions for a fourth order problem with power-type nonlinearity, Math. Ann., 348 (2010), 143-193.doi: 10.1007/s00208-009-0476-8.

    [11]

    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406.

    [12]

    Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents, Discrete Contin. Dyn. Syst., 34 (2014), 2561-2580.doi: 10.3934/dcds.2014.34.2561.

    [13]

    Y. Hua and X. Yu, Necessary conditions for existence results of some integral system, Abstr. Appl. Anal., (2013), Art. ID 504282, 5 pp.

    [14]

    C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457.doi: 10.1007/s00526-006-0013-5.

    [15]

    Y. Lei and C. Li, Sharp Criteria of Liouville Type for some Nonlinear Systems, arXiv:1301.6235, 2013.

    [16]

    Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61.doi: 10.1007/s00526-011-0450-7.

    [17]

    Y. Lei and Z. Lü, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality, Discrete Contin. Dyn. Syst., 33 (2013), 1987-2005.doi: 10.3934/dcds.2013.33.1987.

    [18]

    Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.

    [19]

    Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.doi: 10.1215/S0012-7094-95-08016-8.

    [20]

    E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032.

    [21]

    L. Ma and J. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., 254 (2008), 1058-1087.doi: 10.1016/j.jfa.2007.09.017.

    [22]

    P. J. McKenna and W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differential Equations, (2003), 1-13.

    [23]

    Ph. Souplet, The proof of the Lane-Emden conjecture in 4 space dimensions, Adv. Math., 221 (2009), 1409-1427.doi: 10.1016/j.aim.2009.02.014.

    [24]

    S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials, J. Funct. Anal., 263 (2012), 3857-3882.doi: 10.1016/j.jfa.2012.09.012.

    [25]

    X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$, Adv. Math., 194 (2005), 485-503.doi: 10.1016/j.aim.2004.07.004.

    [26]

    X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109.doi: 10.1016/j.jfa.2007.03.005.

    [27]

    X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Differential Equations, 46 (2013), 75-95.doi: 10.1007/s00526-011-0474-z.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(157) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return