-
Previous Article
Relativistic pendulum and invariant curves
- DCDS Home
- This Issue
-
Next Article
On the limit cycles bifurcating from an ellipse of a quadratic center
Unified field equations coupling four forces and principle of interaction dynamics
1. | Department of Mathematics, Sichuan University, Chengdu |
2. | Department of Mathematics, Indiana University, Bloomington, IN 47405 |
References:
[1] |
F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Physical Review Letters, 13 (1964), 321-323.
doi: 10.1103/PhysRevLett.13.321. |
[2] |
D. Griffiths, Introduction to Elementary Particles, Wiley-Vch, 2008.
doi: 10.1002/9783527618460. |
[3] |
G. Guralnik, C. R. Hagen and T. W. B. Kibble, Global conservation laws and massless particles, Physical Review Letters, 13 (1964), 585-587.
doi: 10.1103/PhysRevLett.13.585. |
[4] |
F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics, John Wiley and Sons, New York, NY, 1984. |
[5] |
P. W. Higgs, Broken symmetries and the masses of gauge bosons, Physical Review Letters, 13 (1964), 508-509.
doi: 10.1103/PhysRevLett.13.508. |
[6] |
M. Kaku, Quantum Field Theory, A Modern Introduction, Oxford University Press, 1993. |
[7] |
G. Kane, Modern Elementary Particle Physics, vol. 2, Addison-Wesley Reading, 1987. |
[8] |
T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
doi: 10.1142/9789812701152. |
[9] |
_______, Duality theory of strong interaction, Electronic Journal of Theoretical Physics, 11:31(2014), 101-124. |
[10] |
_______, Duality theory of weak interaction, Indiana University Institute for Scientific Computing and Applied Mathematics Preprint Series, #1302: http://www.indiana.edu/~iscam/preprint/1302.pdf, (2012). |
[11] |
_______, Unified field theory and principle of representation invariance, arXiv:1212.4893; version 1 appeared in Applied Mathematics and Optimization, 69 (2014), 359-392.
doi: 10.1007/s00245-013-9226-0. |
[12] |
_______, Gravitational field equations and theory of dark matter and dark energy, Discrete and Continuous Dynamical Systems, Ser. A, 34 (2014), 335-366; see also arXiv:1206.5078v2. |
[13] |
_______, Weakton model of elementary particles and decay mechanisms, Indiana University Institute for Scientific Computing and Applied Mathematics Preprint Series, #1304: http://www.indiana.edu/~iscam/preprint/1304.pdf, (May 30, 2013). |
[14] |
Y. Nambu, Quasi-particles and gauge invariance in the theory of superconductivity, Phys. Rev., 117 (1960), 648-663.
doi: 10.1103/PhysRev.117.648. |
[15] |
Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev., 122 (1961), 345-358.
doi: 10.1103/PhysRev.122.345. |
[16] |
_______, Dynamical model of elementary particles based on an analogy with superconductivity. II, Phys. Rev., 124 (1961), 246-254. |
[17] |
C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2nd Edition, Princeton Unversity Press, 2013. |
show all references
References:
[1] |
F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Physical Review Letters, 13 (1964), 321-323.
doi: 10.1103/PhysRevLett.13.321. |
[2] |
D. Griffiths, Introduction to Elementary Particles, Wiley-Vch, 2008.
doi: 10.1002/9783527618460. |
[3] |
G. Guralnik, C. R. Hagen and T. W. B. Kibble, Global conservation laws and massless particles, Physical Review Letters, 13 (1964), 585-587.
doi: 10.1103/PhysRevLett.13.585. |
[4] |
F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics, John Wiley and Sons, New York, NY, 1984. |
[5] |
P. W. Higgs, Broken symmetries and the masses of gauge bosons, Physical Review Letters, 13 (1964), 508-509.
doi: 10.1103/PhysRevLett.13.508. |
[6] |
M. Kaku, Quantum Field Theory, A Modern Introduction, Oxford University Press, 1993. |
[7] |
G. Kane, Modern Elementary Particle Physics, vol. 2, Addison-Wesley Reading, 1987. |
[8] |
T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
doi: 10.1142/9789812701152. |
[9] |
_______, Duality theory of strong interaction, Electronic Journal of Theoretical Physics, 11:31(2014), 101-124. |
[10] |
_______, Duality theory of weak interaction, Indiana University Institute for Scientific Computing and Applied Mathematics Preprint Series, #1302: http://www.indiana.edu/~iscam/preprint/1302.pdf, (2012). |
[11] |
_______, Unified field theory and principle of representation invariance, arXiv:1212.4893; version 1 appeared in Applied Mathematics and Optimization, 69 (2014), 359-392.
doi: 10.1007/s00245-013-9226-0. |
[12] |
_______, Gravitational field equations and theory of dark matter and dark energy, Discrete and Continuous Dynamical Systems, Ser. A, 34 (2014), 335-366; see also arXiv:1206.5078v2. |
[13] |
_______, Weakton model of elementary particles and decay mechanisms, Indiana University Institute for Scientific Computing and Applied Mathematics Preprint Series, #1304: http://www.indiana.edu/~iscam/preprint/1304.pdf, (May 30, 2013). |
[14] |
Y. Nambu, Quasi-particles and gauge invariance in the theory of superconductivity, Phys. Rev., 117 (1960), 648-663.
doi: 10.1103/PhysRev.117.648. |
[15] |
Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev., 122 (1961), 345-358.
doi: 10.1103/PhysRev.122.345. |
[16] |
_______, Dynamical model of elementary particles based on an analogy with superconductivity. II, Phys. Rev., 124 (1961), 246-254. |
[17] |
C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2nd Edition, Princeton Unversity Press, 2013. |
[1] |
Tian Ma, Shouhong Wang. Gravitational Field Equations and Theory of Dark Matter and Dark Energy. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 335-366. doi: 10.3934/dcds.2014.34.335 |
[2] |
Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016 |
[3] |
Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Corrigendum to "On small data scattering of Hartree equations with short-range interaction" [Comm. Pure. Appl. Anal., 15 (2016), 1809-1823]. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1939-1940. doi: 10.3934/cpaa.2017094 |
[4] |
Mathias Schäffner, Anja Schlömerkemper. On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13 (1) : 95-118. doi: 10.3934/nhm.2018005 |
[5] |
Nicolas Forcadel, Cyril Imbert, Régis Monneau. Homogenization of some particle systems with two-body interactions and of the dislocation dynamics. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 785-826. doi: 10.3934/dcds.2009.23.785 |
[6] |
Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309 |
[7] |
Yong Zhou, Jishan Fan. Regularity criteria of strong solutions to a problem of magneto-elastic interactions. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1697-1704. doi: 10.3934/cpaa.2010.9.1697 |
[8] |
Marco Di Francesco, Serikbolsyn Duisembay, Diogo Aguiar Gomes, Ricardo Ribeiro. Particle approximation of one-dimensional Mean-Field-Games with local interactions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3569-3591. doi: 10.3934/dcds.2022025 |
[9] |
Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317 |
[10] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[11] |
Shijin Ding, Bingyuan Huang, Xiaoyan Hou. Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 277-300. doi: 10.3934/dcdsb.2021042 |
[12] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[13] |
Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic and Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005 |
[14] |
Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155 |
[15] |
Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147 |
[16] |
Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic and Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002 |
[17] |
Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193 |
[18] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[19] |
Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 |
[20] |
Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]