\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the control of the wave equation by memory-type boundary condition

Abstract Related Papers Cited by
  • In this paper we consider a wave equation with a viscoelastic boundary damping localized on a part of the boundary. We establish an explicit and general decay rate result that allows a larger class of relaxation functions and generalizes previous results existing in the literature.
    Mathematics Subject Classification: 35B37, 35L55, 74D05, 93D15, 93d20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Alabau-Boussouira, On convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., 51 (2005), 61-105.doi: 10.1007/s00245.

    [2]

    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-2063-1.

    [3]

    M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential Equations, 236 (2007), 407-459.doi: 10.1016/j.jde.2007.02.004.

    [4]

    M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary memory source term, Nonlinear Anal., 38 (1999), 281-294.doi: 10.1016/S0362-546X(98)00195-3.

    [5]

    M. M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary conditions of memory type, Differential Integral Equations, 18 (2005), 583-600.

    [6]

    I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential Integral Equations, 6 (1993), 507-533.

    [7]

    I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., 64 (2006), 1757-1797.doi: 10.1016/j.na.2005.07.024.

    [8]

    I. Lasiecka and D. Toundykov, Regularity of higher energies of wave equation with nonlinear localized damping and a nonlinear source, Nonlinear Anal., 69 (2008), 898-910.doi: 10.1016/j.na.2008.02.069.

    [9]

    W.-J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ricerche Mat., 48 (1999), 61-75.

    [10]

    S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467.doi: 10.1016/j.jmaa.2007.11.048.

    [11]

    S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589-2598.doi: 10.1016/j.na.2007.08.035.

    [12]

    S. A. Messaoudi and M. I. Mustafa, On the control of solutions of viscoelastic equations with boundary feedback, Nonlinear Anal., 10 (2009), 3132-3140.doi: 10.1016/j.nonrwa.2008.10.026.

    [13]

    S. A. Messaoudia and A. Soufyane, General decay of solutions of a wave equation with a boundary control of memory type, Nonlinear Anal., 11 (2010), 2896-2904.doi: 10.1016/j.nonrwa.2009.10.013.

    [14]

    J. E. Munoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.doi: 10.1016/S0022-247X(03)00511-0.

    [15]

    J. E. Munoz Rivera and M. G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asympt. Anal., 49 (2006), 189-204.

    [16]

    J. Y. Park, J. J. Bae and Hyo Jung, Uniform decay for wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Nonlinear Anal., 50 (2002), 871-884.doi: 10.1016/S0362-546X(01)00781-7.

    [17]

    M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory conditions at the boundary, Electron. J. Differ. Equ., 73 (2001), 1-11.

    [18]

    M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal., 54 (2003), 959-976.doi: 10.1016/S0362-546X(03)00121-4.

    [19]

    M. L. Santos and F. Junior, A boundary condition with memory for Kirchhoff plates equations, Appl. Math. Comput., 148 (2004), 475-496.doi: 10.1016/S0096-3003(02)00915-3.

    [20]

    S. T. Wu, General decay for a wave equation of Kirchhoff type with a boundary control of memory type, Boundary Value Problems, 2011 (2011), 15pp.doi: 10.1186/1687-2770-2011-55.

    [21]

    Q. Zhang, Global existence and exponential stability for a quasilinear wave equation with memory damping at the boundary, J. Optim. Theory Appl., 139 (2008), 617-634.doi: 10.1007/s10957-008-9399-x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return