\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the initial value problem for higher dimensional Camassa-Holm equations

Abstract Related Papers Cited by
  • This paper is concerned with the the initial value problem for higher dimensional Camassa-Holm equations. Firstly, the local well-posedness for this equations in both supercritical and critical Besov spaces are established. Then two blow-up criterions of strong solutions to the equations are derived. Finally, the analyticity of its solutions is proved in both variables, globally in space and locally in time.
    Mathematics Subject Classification: Primary: 35Q35, 35Q51; Secondary: 35L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der MathematischenWissenschaften, Vol. 343, Berlin-Heidelberg-NewYork: Springer, 2011.doi: 10.1007/978-3-642-16830-7.

    [2]

    S. Baouendi and C. Goulaouic, Remarks on the abstract form of nonlinear Cauchy-Kowalevski theorems, Comm. Partial Differential Equations, 2 (1977), 1151-1162.doi: 10.1080/03605307708820057.

    [3]

    R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.doi: 10.1006/aima.1998.1768.

    [4]

    J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246.

    [5]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [6]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27.doi: 10.1142/S0219530507000857.

    [7]

    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [8]

    R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.doi: 10.1016/S0065-2156(08)70254-0.

    [9]

    A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Four. (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757.

    [10]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [11]

    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa., 26 (1998), 303-328.

    [12]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [13]

    A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.doi: {10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5}.

    [14]

    A. Constantin and J. Escher, Particles trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7.

    [15]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2), 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [16]

    A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comm. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6.

    [17]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [18]

    A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.doi: 10.1007/s002200050801.

    [19]

    A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: {10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L}.

    [20]

    A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002), 415-422.doi: 10.1007/s00332-002-0517-x.

    [21]

    H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.doi: 10.1007/BF01170373.

    [22]

    R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.

    [23]

    R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.doi: 10.1016/S0022-0396(03)00096-2.

    [24]

    H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Letters, 87 (2001), 4501-4504.doi: 10.1103/PhysRevLett.87.194501.

    [25]

    J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508.doi: 10.1016/j.jfa.2008.07.010.

    [26]

    L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, 1998.

    [27]

    A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.doi: 10.1016/0167-2789(81)90004-X.

    [28]

    C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, Contemp. Math., 526 (2010), 199-220.doi: 10.1090/conm/526/10382.

    [29]

    C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 28 (2011), 623-641.doi: 10.1016/j.anihpc.2011.04.003.

    [30]

    A. A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow-water equation, Differential Integral Equations, 14 (2001), 821-831.

    [31]

    A. A. Himonas and G. Misiolek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.doi: 10.1007/s00208-003-0466-1.

    [32]

    D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380.doi: 10.1137/S1111111102410943.

    [33]

    D. D. Holm and J. E. Marsden, Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation, The breadth of symplectic and Poisson geometry, Progr. Math., 232 (2005), 203-235.doi: 10.1007/0-8176-4419-9_8.

    [34]

    D. D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation, Phys. Rev. E(3), 79 (2009), 016601, 13 pp.doi: 10.1103/PhysRevE.79.016601.

    [35]

    R. S. Johnson and Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid. Mech., 455 (2002), 63-82.doi: 10.1017/S0022112001007224.

    [36]

    T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lecture Notes in Math., Springer Verlag, Berlin, 448 (1975), 25-70.

    [37]

    M. Kohlmann, The two-dimensional periodic b-equation on the diffeomorphism group of the torus, J. Phys. A, 44 (2011), 465205, 17 pp.doi: 10.1088/1751-8113/44/46/465205.

    [38]

    G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.

    [39]

    T. Nishida, A note on a theorem of Nirenberg, J. Differential Geom., 12 (1977), 629-633.

    [40]

    G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X.

    [41]

    W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.doi: 10.1016/j.jfa.2011.04.015.

    [42]

    G. B. Whitham, Linear and Nonlinear Waves, J. Wiley & Sons, New York, 1974.

    [43]

    Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: {10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5}.

    [44]

    K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems, Math. Z., 269 (2011), 1113-1127.doi: 10.1007/s00209-010-0775-5.

    [45]

    K. Yan and Z. Yin, Well-posedness for a modified two-component Camassa-Holm system in critical spaces, Discrete Contin. Dyn. Syst., 33 (2013), 1699-1712.doi: 10.3934/dcds.2013.33.1699.

    [46]

    K. Yan and Z. Yin, Initial boundary value problems for the two-component shallow water systems, Rev. Mat. Iberoamericana, 29 (2013), 911-938.doi: 10.4171/RMI/744.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return