\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a climatological energy balance model with continents distribution

Abstract Related Papers Cited by
  • We present some results on the mathematical treatment of a global two-dimensional diffusive climate model with land - sea distribution. The model is based on a long time averaged energy balance and leads to a nonlinear parabolic equation for the averaged surface temperature. The spatial domain is a compact two-dimensional Riemannian manifold without boundary simulating the Earth surface with land - sea configuration. In the oceanic areas the model is coupled with a deep ocean model. The coupling is given by a dynamic and diffusive boundary condition. We study the existence of a bounded weak solution and its numerical approximation.
    Mathematics Subject Classification: Primary: 35K55, 65M08; Secondary: 35R01, 35K92, 35R70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Springer-Verlag, New York, 1982.doi: 10.1007/978-1-4612-5734-9.

    [2]

    D. S. Balsara and Ch. W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comp. Phys., 160 (2000), 405-452.doi: 10.1006/jcph.2000.6443.

    [3]

    W. H. Berger, S. Burker and E. Vincent, Glacial-Holocene transition: Climate Pulsations and Sporadic Shutdown of NADW production, in Abrupt Climatic Change - Evidence and Implications, (eds. W.H. Berger, L.D. Labeyrie), Reidel Publishing Co. Dordrecht Holland, 216 (1987), 279-297.doi: 10.1007/978-94-009-3993-6_25.

    [4]

    R. Bermejo , J. Carpio, J. I. Díaz and L. Tello, Mathematical and numerical analysis of a nonlinear diffusive climate energy balance Model, Math. Comp. Model., 49 (2009), 1180-1210.doi: 10.1016/j.mcm.2008.04.010.

    [5]

    R. Bermejo, J. Carpio, J. I. Díaz and P. Galán, A finite element algorithm of a nonlinear climate energy balance model Pure and Appl. Geophysics, 165 (2008), 1025-1047.

    [6]

    H. Brezis, Operateurs Maximaux Monotones Et Semigroupes De Contractions Dans Les Espaces De Hilbert, North Holland, Amsterdam, 1973.

    [7]

    M. I. Budyko, The effects of solar radiation variations on the climate of the Earth, Tellus, 21 (1969), 611-619.doi: 10.1111/j.2153-3490.1969.tb00466.x.

    [8]

    J. Casper and H. Atkins, A finite volume high order ENO scheme for two dimensional hyperbolic systems, J. Comp. Phys., 106 (1993), 62-76.doi: 10.1006/jcph.1993.1091.

    [9]

    J. I. Diaz, Mathematical analysis of some diffusive energy balance climate models, in the book Mathematics, Climate and Environment, (J. I. Diaz and J. L. Lions, eds. Masson, Paris, (1993), 28-56.

    [10]

    J. I. Díaz and L. Tello, A nonlinear parabolic problem on a Riemannian manifold without boundary arising in Climatology, Collectanea Mathematica, 50 (1999), 19-51.

    [11]

    J. I. Díaz and L. Tello, Sobre un modelo climático de balance de energía superficial acoplado con un océano profundo, Actas XVII CEDYA/ VI CMA. Univ. Salamanca, 2001.

    [12]

    J. I. Díaz and L. Tello, A 2D climate energy balance model coupled with a 3D deep ocean model, Electronic Journal of Differential Equations, Conf. 16, (2007).

    [13]

    M. Dumbser, C. Enaux and E. F. Toro, Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comp. Phys., 227 (2008), 3971-4001.doi: 10.1016/j.jcp.2007.12.005.

    [14]

    K. McGuffie and A. Henderson-Sellers, A Climate Modelling Primer, Wiley, 2005.

    [15]

    G. Hetzer, The structure of the principal component for semilinear diffusion equations from energy balance climate models, Houston Journal of Math., 16 (1990), 203-216.

    [16]

    G. Hetzer and L. Tello, On a reaction diffusion system arising in Climatology, Dynamic Systems and Applications, 11 (2002), 381-401.

    [17]

    A. Hidalgo and L. Tello, A Finite Volume Scheme for simulating the coupling between deep ocean and an atmospheric energy balance model, In the book Modern Mathematical Tools and Techniques in Capturing Complexity. Springer Series in Synergetics, (2011), 239-255.doi: 10.1007/978-3-642-20853-9_17.

    [18]

    G. R. North, J. G. Mengel and A. A. Short, Simple energy balance models resolving the seasons and the continents: Application to the astronomical theory of the ice ages, Journal of Geophysical Research, 88 (1983), 6576-6586.doi: 10.1029/JC088iC11p06576.

    [19]

    S. P. Ritz, T. F. Stocker and F. Joos, A coupled dynamical ocean-energy balance atmospheric model of paleoclimate studies, Journal of Climate, 1 (2011), 349-375.doi: 10.1175/2010JCLI3351.1.

    [20]

    W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system, J. Appl. Meteorol, 8 (1969), 392-400.doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    [21]

    Ch. W. Shu, Total variation diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9 (1998), 1073-1084.doi: 10.1137/0909073.

    [22]

    T. F. Stocker, D. G. Wright and L. A. Mysak, A zonally averaged, coupled ocean-atmospheric model for paleoclimate studies, Journal of Climate, 5 (1992), 773-797.doi: 10.1175/1520-0442(1992)005<0773:AZACOA>2.0.CO;2.

    [23]

    P. H. Stone, A simplified radiative-dynamical model for the static stability of rotating atmospheres, J. Atmos. Sci., 29 (1972), 405-418.doi: 10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;2.

    [24]

    V. A. Titarev and E. F. Toro, Finite volume WENO schemes for three-dimensional conservation laws, J. Comp. Phys., 201 (2004), 238-260.doi: 10.1016/j.jcp.2004.05.015.

    [25]

    V. A. Titarev and E. F. Toro, ADER schemes for three-dimensional non-linear hyperbolic systems, J. Comp. Phys., 204 (2005), 715-736.doi: 10.1016/j.jcp.2004.10.028.

    [26]

    E. F. Toro and A. Hidalgo, ADER finite volume schemes for nonlinear reaction-diffusion equations, Appl. Num. Math., 59 (2009), 73-100.doi: 10.1016/j.apnum.2007.12.001.

    [27]

    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics ($3^{rd}$ ed), Springer-Verlag Berlin Heidelberg. 2009.doi: 10.1007/b79761.

    [28]

    I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Longman. London. 1987.

    [29]

    R. G. Watts and M. Morantine, Rapid climatic change and the deep ocean, Climatic Change, 16 (1990), 83-97.doi: 10.1007/BF00137347.

    [30]

    R. G. Watts and E. Hayder, A two-dimensional, seasonal, energy balance climate model with continents and ice sheets: testing the Milankovitch theory, Tellus, 36 (1984), 120-131.doi: 10.1111/j.1600-0870.1984.tb00232.x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return