-
Previous Article
Invasion entire solutions in a competition system with nonlocal dispersal
- DCDS Home
- This Issue
-
Next Article
On a climatological energy balance model with continents distribution
Strong positivity of continuous supersolutions to parabolic equations with rough boundary data
1. | Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 |
References:
[1] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction Diffusion Equations, Wiley series in mathematical and computational biology, 2003.
doi: 10.1002/0470871296. |
[2] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, AMS Transl. Monographs, vol. 23, 1968. |
[3] |
D. Le and H. Smith, Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains, J. Math. Anal. Appl., 275 (2002), 208-221.
doi: 10.1016/S0022-247X(02)00314-1. |
[4] |
H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys and Monographs, 41. AMS, Providence, RI, 1995. |
show all references
References:
[1] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction Diffusion Equations, Wiley series in mathematical and computational biology, 2003.
doi: 10.1002/0470871296. |
[2] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, AMS Transl. Monographs, vol. 23, 1968. |
[3] |
D. Le and H. Smith, Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains, J. Math. Anal. Appl., 275 (2002), 208-221.
doi: 10.1016/S0022-247X(02)00314-1. |
[4] |
H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys and Monographs, 41. AMS, Providence, RI, 1995. |
[1] |
Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129 |
[2] |
Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275 |
[3] |
Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems and Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17 |
[4] |
Simona Fornaro, Maria Sosio, Vincenzo Vespri. $L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 737-760. doi: 10.3934/dcdss.2014.7.737 |
[5] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[6] |
Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640 |
[7] |
Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041 |
[8] |
Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193 |
[9] |
Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153 |
[10] |
Inbo Sim, Yun-Ho Kim. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. Conference Publications, 2013, 2013 (special) : 695-707. doi: 10.3934/proc.2013.2013.695 |
[11] |
Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25 |
[12] |
Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010 |
[13] |
Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817 |
[14] |
Cheng Wang, Jian-Guo Liu. Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 201-228. doi: 10.3934/dcdsb.2003.3.201 |
[15] |
Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic and Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685 |
[16] |
Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014 |
[17] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[18] |
Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329 |
[19] |
Juraj Földes, Peter Poláčik. On asymptotically symmetric parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 673-689. doi: 10.3934/nhm.2012.7.673 |
[20] |
Ciprian G. Gal. On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 131-167. doi: 10.3934/dcds.2017006 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]