\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Clines with directional selection and partial panmixia in an unbounded unidimensional habitat

Abstract Related Papers Cited by
  • In geographically structured populations, global panmixia can be regarded as the limiting case of long-distance migration. The effect of incorporating partial panmixia into diallelic single-locus clines maintained by migration and arbitrary directional selection in an unbounded unidimensional habitat is investigated. The population density is uniform. Migration and selection are both weak; the former is homogeneous and symmetric. Suppose that the spatial factor $g(x)$ in the scaled selection term satisfies $g'(x)\ge 0$ for every $x$ and the limiting values $p_{\pm}=p(\pm\infty)$ of the equilibrium gene frequency $p(x)$ exist and satisfy $0 < p_- < p_+ < 1$. Then (i) $p_- < p(x) < p_+$ for every $x\in\mathbb{R}$; (ii) $p'(x)>0$ for every $x\in\mathbb{R}$; (iii) for each given pair $p_-$ and $p_+$, there exists at most one equilibrium $p(x)$; (iv) the existence and multiplicity of $p(x)$ are determined under various conditions; (v) given two pairs $p_{1\pm}$ and $p_{2\pm}$ such that $p_{1\pm}>p_{2\pm}$, the ordering $p_1(x)>p_2(x)$ holds for every $x\in\mathbb{R}$; (vi) if the factor $f(p)$ $(\ge 0)$ in the scaled selection term is unimodal, as is the case when the selection coefficients do not depend on $p$, and in some other situations, then $p_{1\pm}>p_{2\pm}$; and (vii) in a step-environment that changes sign at $x=0$, under some assumptions on $f(p)$, the equilibria satisfy $p''(x)>0$ if $ x<0$ and $p''(x)<0$ if $x>0$.
    Mathematics Subject Classification: Primary: 35K57, 35R09, 92D10, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Charlesworth and D. Charlesworth, Elements of Evolutionary Genetics, Roberts, Greenwood Village, 2010.

    [2]

    J. A. Endler, Geographic Variation, Speciation, and Clines, Princeton University Press, Princeton, 1977.

    [3]

    P. C. Fife and L. A. Peletier, Nonlinear diffusion in population genetics, Arch. Rat. Mech. Anal., 64 (1977), 93-109.doi: 10.1007/BF00280092.

    [4]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Springer, Berlin, 2001.

    [5]

    Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population genetics, J. Diff. Eqs., 181 (2002), 388-418.doi: 10.1006/jdeq.2001.4086.

    [6]

    Y. Lou, T. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Disc. Cont. Dyn. Syst. A, 33 (2013), 4349-4373.doi: 10.3934/dcds.2013.33.4349.

    [7]

    Y. Lou, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity, Disc. Cont. Dyn. Syst. A, 27 (2010), 643-655.doi: 10.3934/dcds.2010.27.643.

    [8]

    Y. Lou, T. Nagylaki and L. Su, An integro-PDE model from population genetics, J. Diff. Eqs., 254 (2013), 2367-2392.doi: 10.1016/j.jde.2012.12.006.

    [9]

    T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615.

    [10]

    T. Nagylaki, Clines with variable migration, Genetics, 83 (1976), 867-886.

    [11]

    T. Nagylaki, Clines with asymmetric migration, Genetics, 88 (1978), 813-827.

    [12]

    T. Nagylaki, The strong-migration limit in geographically structured populations, J. Math. Biol., 9 (1980), 101-114.doi: 10.1007/BF00275916.

    [13]

    T. Nagylaki, Introduction to Theoretical Population Genetics, Biomathematics, 21, Springer, Berlin, 1992.doi: 10.1007/978-3-642-76214-7.

    [14]

    T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theor. Popul. Biol., 75 (2009), 239-259.doi: 10.1016/j.tpb.2009.01.004.

    [15]

    T. Nagylaki, The influence of partial panmixia on neutral models of spatial variation, Theor. Popul. Biol., 79 (2011), 19-38.doi: 10.1016/j.tpb.2010.08.006.

    [16]

    T. Nagylaki, Clines with partial panmixia, Theor. Popul. Biol., 81 (2012), 45-68.doi: 10.1016/j.tpb.2011.09.006.

    [17]

    T. Nagylaki, Clines with partial panmixia in an unbounded unidimensional habitat, Theor. Popul. Biol., 82 (2012), 22-28.doi: 10.1016/j.tpb.2012.02.008.

    [18]

    T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in Tutorials in Mathematical Biosciences IV (ed. A. Friedman), Lecture Notes in Math., 1922, Springer, Berlin, (2008), 117-170.doi: 10.1007/978-3-540-74331-6_4.

    [19]

    K. Nakashima, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles, Disc. Cont. Dyn. Syst. A, 27 (2010), 617-641.doi: 10.3934/dcds.2010.27.617.

    [20]

    D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return