May  2015, 35(5): 1801-1816. doi: 10.3934/dcds.2015.35.1801

The magnetic ray transform on Anosov surfaces

1. 

Department of Pure Mathematics & Mathematical Statistics, University of Cambridge, CB3 0WB, United Kingdom

Received  May 2013 Revised  October 2013 Published  December 2014

Assume (M,g,$\Omega$) is a closed, oriented Riemannian surface equipped with an Anosov magnetic flow. We establish certain results on the surjectivity of the adjoint of the magnetic ray transform, and use these to prove the injectivity of the magnetic ray transform on sums of tensors of degree at most two. In the final section of the paper we give an application to the entropy production of magnetic flows perturbed by symmetric 2-tensors.
Citation: Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801
References:
[1]

Inverse Probl. Imaging., 7 (2013), 27-46. doi: 10.3934/ipi.2013.7.27.  Google Scholar

[2]

J. Inverse Ill-Posed Probl., 5 (1997), 487-490. doi: 10.1515/jiip.1997.5.6.487.  Google Scholar

[3]

Proc. Steklov Inst. Math., 90 (1967), 209pp.  Google Scholar

[4]

Uspekhi Mat. Nauk, 22 (1967), 107-172.  Google Scholar

[5]

Dokl. Akad. Nauk SSSR, 138 (1961), 255-257.  Google Scholar

[6]

Nonlinearity, 15 (2002), 281-314. doi: 10.1088/0951-7715/15/2/305.  Google Scholar

[7]

Topology, 37 (1998), 1265-1273. doi: 10.1016/S0040-9383(97)00086-4.  Google Scholar

[8]

Comm. Math. Phys., 269 (2007), 533-543. doi: 10.1007/s00220-006-0117-y.  Google Scholar

[9]

Ergod. Th. & Dynam. Sys., 28 (2008), 707-737. doi: 10.1017/S0143385707000612.  Google Scholar

[10]

Math. Res. Lett., 12 (2005), 719-729. doi: 10.4310/MRL.2005.v12.n5.a9.  Google Scholar

[11]

Mat. Contemp., 34 (2008), 155-193.  Google Scholar

[12]

Adv. Math., 216 (2007), 535-609. doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[13]

Ergod. Th. & Dynam. Sys., 23 (2003), 59-74. doi: 10.1017/S0143385702000822.  Google Scholar

[14]

Second Edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992. doi: 10.1007/978-1-4612-2034-3.  Google Scholar

[15]

Duke Math. J., 119 (2003), 465-526. doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[16]

(French), Ergod. Th. & Dynam. Sys., 4 (1984), 67-80. doi: 10.1017/S0143385700002273.  Google Scholar

[17]

Topology, 19 (1980), 301-312. doi: 10.1016/0040-9383(80)90015-4.  Google Scholar

[18]

Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge UK, 1995. doi: 10.1017/CBO9780511809187.  Google Scholar

[19]

Discrete Contin. Dyn. Syst., 24 (2009), 471-487. doi: 10.3934/dcds.2009.24.471.  Google Scholar

[20]

Mat. Zametki, 10 (1971), 555-564.  Google Scholar

[21]

Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1296-1320.  Google Scholar

[22]

Ann. of Math., 123 (1986), 537-611. doi: 10.2307/1971334.  Google Scholar

[23]

(French), Invent. Math., 65 (1981), 71-83. doi: 10.1007/BF01389295.  Google Scholar

[24]

(Russian), Dokl. Akad. Nauk SSSR, 232 (1977), 32-35.  Google Scholar

[25]

Geom. Funct. Anal., 22 (2012), 1460-1489. doi: 10.1007/s00039-012-0183-6.  Google Scholar

[26]

Invent. Math., 193 (2013), 229-247. doi: 10.1007/s00222-012-0432-1.  Google Scholar

[27]

J. Differential Geom., 98 (2014), 147-181.  Google Scholar

[28]

Ann. of Math., 161 (2005), 1093-1110. doi: 10.4007/annals.2005.161.1093.  Google Scholar

[29]

Topology, 11 (1972), 147-150. doi: 10.1016/0040-9383(72)90002-X.  Google Scholar

[30]

Invent. Math., 81 (1985), 413-426. doi: 10.1007/BF01388579.  Google Scholar

[31]

J. Diff. Geom., 39 (1994), 457-489.  Google Scholar

[32]

J. Diff. Geom., 25 (1987), 99-116.  Google Scholar

[33]

J. Statist. Phys., 85 (1996), 1-23. doi: 10.1007/BF02175553.  Google Scholar

[34]

Ergodic Theory Dynam. Systems, 28 (2008), 613-631. doi: 10.1017/S0143385707000260.  Google Scholar

[35]

J. Diff. Geom., 56 (2000), 93-110.  Google Scholar

[36]

Undergrad. Texts Math. Springer-Verlag, New York, 1967.  Google Scholar

[37]

Fund. Math., 163 (2000), 177-191.  Google Scholar

show all references

References:
[1]

Inverse Probl. Imaging., 7 (2013), 27-46. doi: 10.3934/ipi.2013.7.27.  Google Scholar

[2]

J. Inverse Ill-Posed Probl., 5 (1997), 487-490. doi: 10.1515/jiip.1997.5.6.487.  Google Scholar

[3]

Proc. Steklov Inst. Math., 90 (1967), 209pp.  Google Scholar

[4]

Uspekhi Mat. Nauk, 22 (1967), 107-172.  Google Scholar

[5]

Dokl. Akad. Nauk SSSR, 138 (1961), 255-257.  Google Scholar

[6]

Nonlinearity, 15 (2002), 281-314. doi: 10.1088/0951-7715/15/2/305.  Google Scholar

[7]

Topology, 37 (1998), 1265-1273. doi: 10.1016/S0040-9383(97)00086-4.  Google Scholar

[8]

Comm. Math. Phys., 269 (2007), 533-543. doi: 10.1007/s00220-006-0117-y.  Google Scholar

[9]

Ergod. Th. & Dynam. Sys., 28 (2008), 707-737. doi: 10.1017/S0143385707000612.  Google Scholar

[10]

Math. Res. Lett., 12 (2005), 719-729. doi: 10.4310/MRL.2005.v12.n5.a9.  Google Scholar

[11]

Mat. Contemp., 34 (2008), 155-193.  Google Scholar

[12]

Adv. Math., 216 (2007), 535-609. doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[13]

Ergod. Th. & Dynam. Sys., 23 (2003), 59-74. doi: 10.1017/S0143385702000822.  Google Scholar

[14]

Second Edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992. doi: 10.1007/978-1-4612-2034-3.  Google Scholar

[15]

Duke Math. J., 119 (2003), 465-526. doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[16]

(French), Ergod. Th. & Dynam. Sys., 4 (1984), 67-80. doi: 10.1017/S0143385700002273.  Google Scholar

[17]

Topology, 19 (1980), 301-312. doi: 10.1016/0040-9383(80)90015-4.  Google Scholar

[18]

Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge UK, 1995. doi: 10.1017/CBO9780511809187.  Google Scholar

[19]

Discrete Contin. Dyn. Syst., 24 (2009), 471-487. doi: 10.3934/dcds.2009.24.471.  Google Scholar

[20]

Mat. Zametki, 10 (1971), 555-564.  Google Scholar

[21]

Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1296-1320.  Google Scholar

[22]

Ann. of Math., 123 (1986), 537-611. doi: 10.2307/1971334.  Google Scholar

[23]

(French), Invent. Math., 65 (1981), 71-83. doi: 10.1007/BF01389295.  Google Scholar

[24]

(Russian), Dokl. Akad. Nauk SSSR, 232 (1977), 32-35.  Google Scholar

[25]

Geom. Funct. Anal., 22 (2012), 1460-1489. doi: 10.1007/s00039-012-0183-6.  Google Scholar

[26]

Invent. Math., 193 (2013), 229-247. doi: 10.1007/s00222-012-0432-1.  Google Scholar

[27]

J. Differential Geom., 98 (2014), 147-181.  Google Scholar

[28]

Ann. of Math., 161 (2005), 1093-1110. doi: 10.4007/annals.2005.161.1093.  Google Scholar

[29]

Topology, 11 (1972), 147-150. doi: 10.1016/0040-9383(72)90002-X.  Google Scholar

[30]

Invent. Math., 81 (1985), 413-426. doi: 10.1007/BF01388579.  Google Scholar

[31]

J. Diff. Geom., 39 (1994), 457-489.  Google Scholar

[32]

J. Diff. Geom., 25 (1987), 99-116.  Google Scholar

[33]

J. Statist. Phys., 85 (1996), 1-23. doi: 10.1007/BF02175553.  Google Scholar

[34]

Ergodic Theory Dynam. Systems, 28 (2008), 613-631. doi: 10.1017/S0143385707000260.  Google Scholar

[35]

J. Diff. Geom., 56 (2000), 93-110.  Google Scholar

[36]

Undergrad. Texts Math. Springer-Verlag, New York, 1967.  Google Scholar

[37]

Fund. Math., 163 (2000), 177-191.  Google Scholar

[1]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[2]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[3]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[4]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027

[5]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]