May  2015, 35(5): 1817-1827. doi: 10.3934/dcds.2015.35.1817

Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements

1. 

Centro de Matemática, Facultad de Ciencias, Iguá 4225, Montevideo, CP 11400, Uruguay

2. 

IMERL, Facultad de Ingeniería, Julio Herrera y Reissig 565, Montevideo, CP 11300, Uruguay, Uruguay

Received  March 2014 Revised  September 2014 Published  December 2014

Let $BS(1,n)= \langle a,b : a b a ^{-1} = b ^n\rangle$ be the solvable Baumslag-Solitar group, where $n \geq 2$. We study representations of $BS(1, n)$ by homeomorphisms of closed surfaces of genus $g\geq 1$ with (pseudo)-Anosov elements. That is, we consider a closed surface $S$ of genus $g\geq 1$, and homeomorphisms $f, h: S \to S$ such that $h f h^{-1} = f^n$, for some $ n\geq 2$. It is known that $f$ (or some power of $f$) must be homotopic to the identity. Suppose that $h$ is (pseudo)-Anosov with stretch factor $\lambda >1$. We show that $\langle f,h \rangle$ is not a faithful representation of $BS(1, n)$ if $\lambda > n$. We also show that there are no faithful representations of $BS(1, n)$ by torus homeomorphisms with $h$ an Anosov map and $f$ area preserving (regardless of the value of $\lambda$).
Citation: Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817
References:
[1]

M. Bestvina, Questions in geometric group theory,, Available from , ().   Google Scholar

[2]

G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups,, Bull. Amer. Math. Soc., 68 (1962), 199.  doi: 10.1090/S0002-9904-1962-10745-9.  Google Scholar

[3]

D. Fisher, Groups acting on manifolds: Around the Zimmer program,, Geometry, (2011), 72.  doi: 10.7208/chicago/9780226237909.001.0001.  Google Scholar

[4]

J.Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.  doi: 10.1215/S0012-7094-06-13132-0.  Google Scholar

[5]

B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.  doi: 10.1215/S0012-7094-01-10636-4.  Google Scholar

[6]

B. Farb and D. Margalit, A Primer on Mapping Class Groups,, {Princeton University Press}, (2012).   Google Scholar

[7]

B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups,, Invent. Math., 131 (1998), 419.  doi: 10.1007/s002220050210.  Google Scholar

[8]

N. Guelman and I. Liousse, C1- actions of Baumslag-Solitar groups on S1,, AGT, 11 (2011), 1701.  doi: 10.2140/agt.2011.11.1701.  Google Scholar

[9]

N. Guelman and I. Liousse, Actions of Baumslag-Solitar groups on surfaces,, Disc. Cont. Dyn. Sys., 33 (2013), 1945.   Google Scholar

[10]

M. E. Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$- manifold,, Ill. J. Math., 10 (1996), 563.   Google Scholar

[11]

A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).   Google Scholar

[12]

A. Koropecki and F. Tal, Bounded and unbounded behaviour for rational pseudo rotations,, Preprint, ().   Google Scholar

[13]

J. D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes,, Preprint., ().   Google Scholar

[14]

A. Navas, Groupes resolubles de diffeomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.  doi: 10.1007/s00574-004-0002-2.  Google Scholar

[15]

J. F. Plante, Solvable groups acting on the line,, Trans. Amer. Math. Soc., 278 (1983), 401.  doi: 10.1090/S0002-9947-1983-0697084-7.  Google Scholar

[16]

J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sc. ENS, 22 (1989), 99.   Google Scholar

[17]

J. Rocha, A note on the $C 0$-centralizer of an open class of bidimensional Anosov diffeomorphisms,, Aequ. math., 76 (2008), 105.  doi: 10.1007/s00010-007-2910-x.  Google Scholar

[18]

R. Zimmer, Actions of semisimple groups and discrete subgroups,, Proc. Internat. Congr. Math., 2 (1987), 1247.   Google Scholar

show all references

References:
[1]

M. Bestvina, Questions in geometric group theory,, Available from , ().   Google Scholar

[2]

G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups,, Bull. Amer. Math. Soc., 68 (1962), 199.  doi: 10.1090/S0002-9904-1962-10745-9.  Google Scholar

[3]

D. Fisher, Groups acting on manifolds: Around the Zimmer program,, Geometry, (2011), 72.  doi: 10.7208/chicago/9780226237909.001.0001.  Google Scholar

[4]

J.Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.  doi: 10.1215/S0012-7094-06-13132-0.  Google Scholar

[5]

B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.  doi: 10.1215/S0012-7094-01-10636-4.  Google Scholar

[6]

B. Farb and D. Margalit, A Primer on Mapping Class Groups,, {Princeton University Press}, (2012).   Google Scholar

[7]

B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups,, Invent. Math., 131 (1998), 419.  doi: 10.1007/s002220050210.  Google Scholar

[8]

N. Guelman and I. Liousse, C1- actions of Baumslag-Solitar groups on S1,, AGT, 11 (2011), 1701.  doi: 10.2140/agt.2011.11.1701.  Google Scholar

[9]

N. Guelman and I. Liousse, Actions of Baumslag-Solitar groups on surfaces,, Disc. Cont. Dyn. Sys., 33 (2013), 1945.   Google Scholar

[10]

M. E. Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$- manifold,, Ill. J. Math., 10 (1996), 563.   Google Scholar

[11]

A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).   Google Scholar

[12]

A. Koropecki and F. Tal, Bounded and unbounded behaviour for rational pseudo rotations,, Preprint, ().   Google Scholar

[13]

J. D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes,, Preprint., ().   Google Scholar

[14]

A. Navas, Groupes resolubles de diffeomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.  doi: 10.1007/s00574-004-0002-2.  Google Scholar

[15]

J. F. Plante, Solvable groups acting on the line,, Trans. Amer. Math. Soc., 278 (1983), 401.  doi: 10.1090/S0002-9947-1983-0697084-7.  Google Scholar

[16]

J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sc. ENS, 22 (1989), 99.   Google Scholar

[17]

J. Rocha, A note on the $C 0$-centralizer of an open class of bidimensional Anosov diffeomorphisms,, Aequ. math., 76 (2008), 105.  doi: 10.1007/s00010-007-2910-x.  Google Scholar

[18]

R. Zimmer, Actions of semisimple groups and discrete subgroups,, Proc. Internat. Congr. Math., 2 (1987), 1247.   Google Scholar

[1]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[2]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[5]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[6]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[7]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[11]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[12]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[13]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]