-
Previous Article
Lipschitz perturbations of expansive systems
- DCDS Home
- This Issue
-
Next Article
The magnetic ray transform on Anosov surfaces
Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements
1. | Centro de Matemática, Facultad de Ciencias, Iguá 4225, Montevideo, CP 11400, Uruguay |
2. | IMERL, Facultad de Ingeniería, Julio Herrera y Reissig 565, Montevideo, CP 11300, Uruguay, Uruguay |
References:
[1] |
M. Bestvina, Questions in geometric group theory,, Available from , (). Google Scholar |
[2] |
G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups,, Bull. Amer. Math. Soc., 68 (1962), 199.
doi: 10.1090/S0002-9904-1962-10745-9. |
[3] |
D. Fisher, Groups acting on manifolds: Around the Zimmer program,, Geometry, (2011), 72.
doi: 10.7208/chicago/9780226237909.001.0001. |
[4] |
J.Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.
doi: 10.1215/S0012-7094-06-13132-0. |
[5] |
B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.
doi: 10.1215/S0012-7094-01-10636-4. |
[6] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups,, {Princeton University Press}, (2012).
|
[7] |
B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups,, Invent. Math., 131 (1998), 419.
doi: 10.1007/s002220050210. |
[8] |
N. Guelman and I. Liousse, C1- actions of Baumslag-Solitar groups on S1,, AGT, 11 (2011), 1701.
doi: 10.2140/agt.2011.11.1701. |
[9] |
N. Guelman and I. Liousse, Actions of Baumslag-Solitar groups on surfaces,, Disc. Cont. Dyn. Sys., 33 (2013), 1945.
|
[10] |
M. E. Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$- manifold,, Ill. J. Math., 10 (1996), 563.
|
[11] |
A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).
|
[12] |
A. Koropecki and F. Tal, Bounded and unbounded behaviour for rational pseudo rotations,, Preprint, (). Google Scholar |
[13] |
J. D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes,, Preprint., (). Google Scholar |
[14] |
A. Navas, Groupes resolubles de diffeomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.
doi: 10.1007/s00574-004-0002-2. |
[15] |
J. F. Plante, Solvable groups acting on the line,, Trans. Amer. Math. Soc., 278 (1983), 401.
doi: 10.1090/S0002-9947-1983-0697084-7. |
[16] |
J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sc. ENS, 22 (1989), 99.
|
[17] |
J. Rocha, A note on the $C 0$-centralizer of an open class of bidimensional Anosov diffeomorphisms,, Aequ. math., 76 (2008), 105.
doi: 10.1007/s00010-007-2910-x. |
[18] |
R. Zimmer, Actions of semisimple groups and discrete subgroups,, Proc. Internat. Congr. Math., 2 (1987), 1247.
|
show all references
References:
[1] |
M. Bestvina, Questions in geometric group theory,, Available from , (). Google Scholar |
[2] |
G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups,, Bull. Amer. Math. Soc., 68 (1962), 199.
doi: 10.1090/S0002-9904-1962-10745-9. |
[3] |
D. Fisher, Groups acting on manifolds: Around the Zimmer program,, Geometry, (2011), 72.
doi: 10.7208/chicago/9780226237909.001.0001. |
[4] |
J.Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.
doi: 10.1215/S0012-7094-06-13132-0. |
[5] |
B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.
doi: 10.1215/S0012-7094-01-10636-4. |
[6] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups,, {Princeton University Press}, (2012).
|
[7] |
B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups,, Invent. Math., 131 (1998), 419.
doi: 10.1007/s002220050210. |
[8] |
N. Guelman and I. Liousse, C1- actions of Baumslag-Solitar groups on S1,, AGT, 11 (2011), 1701.
doi: 10.2140/agt.2011.11.1701. |
[9] |
N. Guelman and I. Liousse, Actions of Baumslag-Solitar groups on surfaces,, Disc. Cont. Dyn. Sys., 33 (2013), 1945.
|
[10] |
M. E. Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$- manifold,, Ill. J. Math., 10 (1996), 563.
|
[11] |
A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).
|
[12] |
A. Koropecki and F. Tal, Bounded and unbounded behaviour for rational pseudo rotations,, Preprint, (). Google Scholar |
[13] |
J. D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes,, Preprint., (). Google Scholar |
[14] |
A. Navas, Groupes resolubles de diffeomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.
doi: 10.1007/s00574-004-0002-2. |
[15] |
J. F. Plante, Solvable groups acting on the line,, Trans. Amer. Math. Soc., 278 (1983), 401.
doi: 10.1090/S0002-9947-1983-0697084-7. |
[16] |
J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sc. ENS, 22 (1989), 99.
|
[17] |
J. Rocha, A note on the $C 0$-centralizer of an open class of bidimensional Anosov diffeomorphisms,, Aequ. math., 76 (2008), 105.
doi: 10.1007/s00010-007-2910-x. |
[18] |
R. Zimmer, Actions of semisimple groups and discrete subgroups,, Proc. Internat. Congr. Math., 2 (1987), 1247.
|
[1] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[2] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[3] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[4] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[5] |
Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005 |
[6] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[7] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[8] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[9] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[10] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[11] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[12] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[13] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]