May  2015, 35(5): 1829-1841. doi: 10.3934/dcds.2015.35.1829

Lipschitz perturbations of expansive systems

1. 

Departamento de Matemática y Estadística del Litoral, Universidad de la República, Gral. Rivera 1350, Salto

Received  May 2014 Revised  September 2014 Published  December 2014

We extend some known results from smooth dynamical systems to the category of Lipschitz homeomorphisms of compact metric spaces. We consider dynamical properties as robust expansiveness and structural stability allowing Lipschitz perturbations with respect to a hyperbolic metric. We also study the relationship between Lipschitz topologies and the $C^1$ topology on smooth manifolds.
Citation: Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829
References:
[1]

N. H. Bingham and A. J. Ostaszewski, Normed versus topological groups: Dichotomy and duality,, Dissertationes Mathematicae, 472 (2010).  doi: 10.4064/dm472-0-1.  Google Scholar

[2]

A. Fathi, Expansiveness, hyperbolicity and Hausdorff dimension,, Commun. Math. Phys., 126 (1989), 249.  doi: 10.1007/BF02125125.  Google Scholar

[3]

K. Fukui and T. Nakamura, A topological property of Lipschitz mappings,, Topology Appl., 148 (2005), 143.  doi: 10.1016/j.topol.2004.08.005.  Google Scholar

[4]

J. Harrison, Unsmoothable diffeomorphisms on higher dimensional manifolds,, Proc. Amer. Math. Soc., 73 (1979), 249.  doi: 10.1090/S0002-9939-1979-0516473-9.  Google Scholar

[5]

K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov,, Osaka J. Math., 27 (1990), 117.   Google Scholar

[6]

E. Jeandenans, Difféomorphismes Hyperboliques Des Surfaces Et Combinatoire Des Partitions De Markov,, Thesis, (1996).   Google Scholar

[7]

J. Lewowicz, Lyapunov functions and topological stability,, J. Diff. Eq., 38 (1980), 192.  doi: 10.1016/0022-0396(80)90004-2.  Google Scholar

[8]

J. Lewowicz, Persistence in expansive systems,, Erg. Th. & Dyn. Sys., 3 (1983), 567.  doi: 10.1017/S0143385700002157.  Google Scholar

[9]

J. Lewowicz, Expansive homeomorphisms of surfaces,, Bol. Soc. Brasil. Mat. (N.S.), 20 (1989), 113.  doi: 10.1007/BF02585472.  Google Scholar

[10]

R. Mañé, Expansive diffeomorphisms,, Lecture Notes in Math., 468 (1975), 162.   Google Scholar

[11]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms,, Comment. Math. Helvetici, 68 (1993), 289.  doi: 10.1007/BF02565820.  Google Scholar

[12]

S. Yu. Pilyugin, A. A. Rodionova and K. Sakai, Orbital and weak shadowing properties,, Discrete and continuous dynamical systems, 9 (2003), 287.  doi: 10.3934/dcds.2003.9.287.  Google Scholar

[13]

S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing implies structural stability,, Nonlinearity, 23 (2010), 2509.  doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[14]

C. Robinson, Dynamical Systems,, CRC Press, (1999).   Google Scholar

[15]

K. Sakai and R. Y. Wong, Conjugating homeomorphisms to uniform homeomorphisms,, Trans. Amer. Math. Soc., 311 (1989), 337.  doi: 10.1090/S0002-9947-1989-0974780-0.  Google Scholar

[16]

K. Takaki, Lipeomorphisms close to an Anosov diffeomorphism,, Nagoya Math. J., 53 (1974), 71.   Google Scholar

[17]

P. Walters, On the pseudo orbit tracing property and its relationship to stability,, Lecture Notes in Math., 668 (1978), 231.   Google Scholar

[18]

F. W. Wilson, Pasting diffeomorphisms of $R^n$,, Illinois J. Math., 16 (1972), 222.   Google Scholar

show all references

References:
[1]

N. H. Bingham and A. J. Ostaszewski, Normed versus topological groups: Dichotomy and duality,, Dissertationes Mathematicae, 472 (2010).  doi: 10.4064/dm472-0-1.  Google Scholar

[2]

A. Fathi, Expansiveness, hyperbolicity and Hausdorff dimension,, Commun. Math. Phys., 126 (1989), 249.  doi: 10.1007/BF02125125.  Google Scholar

[3]

K. Fukui and T. Nakamura, A topological property of Lipschitz mappings,, Topology Appl., 148 (2005), 143.  doi: 10.1016/j.topol.2004.08.005.  Google Scholar

[4]

J. Harrison, Unsmoothable diffeomorphisms on higher dimensional manifolds,, Proc. Amer. Math. Soc., 73 (1979), 249.  doi: 10.1090/S0002-9939-1979-0516473-9.  Google Scholar

[5]

K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov,, Osaka J. Math., 27 (1990), 117.   Google Scholar

[6]

E. Jeandenans, Difféomorphismes Hyperboliques Des Surfaces Et Combinatoire Des Partitions De Markov,, Thesis, (1996).   Google Scholar

[7]

J. Lewowicz, Lyapunov functions and topological stability,, J. Diff. Eq., 38 (1980), 192.  doi: 10.1016/0022-0396(80)90004-2.  Google Scholar

[8]

J. Lewowicz, Persistence in expansive systems,, Erg. Th. & Dyn. Sys., 3 (1983), 567.  doi: 10.1017/S0143385700002157.  Google Scholar

[9]

J. Lewowicz, Expansive homeomorphisms of surfaces,, Bol. Soc. Brasil. Mat. (N.S.), 20 (1989), 113.  doi: 10.1007/BF02585472.  Google Scholar

[10]

R. Mañé, Expansive diffeomorphisms,, Lecture Notes in Math., 468 (1975), 162.   Google Scholar

[11]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms,, Comment. Math. Helvetici, 68 (1993), 289.  doi: 10.1007/BF02565820.  Google Scholar

[12]

S. Yu. Pilyugin, A. A. Rodionova and K. Sakai, Orbital and weak shadowing properties,, Discrete and continuous dynamical systems, 9 (2003), 287.  doi: 10.3934/dcds.2003.9.287.  Google Scholar

[13]

S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing implies structural stability,, Nonlinearity, 23 (2010), 2509.  doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[14]

C. Robinson, Dynamical Systems,, CRC Press, (1999).   Google Scholar

[15]

K. Sakai and R. Y. Wong, Conjugating homeomorphisms to uniform homeomorphisms,, Trans. Amer. Math. Soc., 311 (1989), 337.  doi: 10.1090/S0002-9947-1989-0974780-0.  Google Scholar

[16]

K. Takaki, Lipeomorphisms close to an Anosov diffeomorphism,, Nagoya Math. J., 53 (1974), 71.   Google Scholar

[17]

P. Walters, On the pseudo orbit tracing property and its relationship to stability,, Lecture Notes in Math., 668 (1978), 231.   Google Scholar

[18]

F. W. Wilson, Pasting diffeomorphisms of $R^n$,, Illinois J. Math., 16 (1972), 222.   Google Scholar

[1]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[2]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[5]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[6]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[9]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[10]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[16]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]