• Previous Article
    Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
  • DCDS Home
  • This Issue
  • Next Article
    A variational approach to reaction-diffusion equations with forced speed in dimension 1
May  2015, 35(5): 1873-1890. doi: 10.3934/dcds.2015.35.1873

Stability of singular limit cycles for Abel equations

1. 

Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06006, Spain, Spain

2. 

Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona

Received  March 2014 Revised  September 2014 Published  December 2014

We obtain a criterion for determining the stability of singular limit cycles of Abel equations $x'=A(t)x^3+B(t)x^2$. This stability controls the possible saddle-node bifurcations of limit cycles. Therefore, studying the Hopf-like bifurcations at $x=0$, together with the bifurcations at infinity of a suitable compactification of the equations, we obtain upper bounds of their number of limit cycles. As an illustration of this approach, we prove that the family $x'=a t(t-t_A)x^3+b (t-t_B)x^2$, with $a ,b>0$, has at most two positive limit cycles for any $t_B,t_A$.
Citation: José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873
References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973).   Google Scholar

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.   Google Scholar

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944.   Google Scholar

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15.  doi: 10.2307/1969724.  Google Scholar

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159.  doi: 10.1016/j.physd.2008.05.011.  Google Scholar

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.  doi: 10.1142/S0218127406017130.  Google Scholar

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849.  doi: 10.1016/S0898-1221(03)90147-7.  Google Scholar

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977).   Google Scholar

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67.  doi: 10.1007/BF01390315.  Google Scholar

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603.  doi: 10.3934/dcds.2013.33.1603.  Google Scholar

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011).  doi: 10.1155/2011/387429.  Google Scholar

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622.  doi: 10.1007/BF02316287.  Google Scholar

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001).  doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966).   Google Scholar

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981).   Google Scholar

show all references

References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973).   Google Scholar

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.   Google Scholar

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944.   Google Scholar

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15.  doi: 10.2307/1969724.  Google Scholar

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159.  doi: 10.1016/j.physd.2008.05.011.  Google Scholar

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.  doi: 10.1142/S0218127406017130.  Google Scholar

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849.  doi: 10.1016/S0898-1221(03)90147-7.  Google Scholar

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977).   Google Scholar

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67.  doi: 10.1007/BF01390315.  Google Scholar

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603.  doi: 10.3934/dcds.2013.33.1603.  Google Scholar

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011).  doi: 10.1155/2011/387429.  Google Scholar

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622.  doi: 10.1007/BF02316287.  Google Scholar

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001).  doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966).   Google Scholar

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981).   Google Scholar

[1]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[2]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[4]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[7]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[8]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[9]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[10]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[11]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[12]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[13]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[14]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[15]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[16]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[17]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[18]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[19]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[20]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (4)

[Back to Top]