• Previous Article
    Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem
  • DCDS Home
  • This Issue
  • Next Article
    Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
May  2015, 35(5): 1905-1920. doi: 10.3934/dcds.2015.35.1905

$L^q$-Extensions of $L^p$-spaces by fractional diffusion equations

1. 

Department of Mathematics and Department of Computer Science, Georgetown University, Washington D.C. 20057

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada

Received  May 2014 Revised  September 2014 Published  December 2014

Based on the geometric-measure-theoretic analysis of a new $L^p$-type capacity defined in the upper-half Euclidean space, this note characterizes a nonnegative Randon measure $\mu$ on $\mathbb R^{1+n}_+$ such that the extension $R_\alpha L^p(\mathbb R^n)\subseteq L^q(\mathbb R^{1+n}_+,\mu)$ holds for $(\alpha,p,q)\in (0,1)\times(1,\infty)\times(1,\infty)$ where $u=R_\alpha f$ is the weak solution of the fractional diffusion equation $(\partial_t + (-\Delta_x)^\alpha)u(t, x) = 0$ in $\mathbb R^{1+n}_+$ subject to $u(0,x)=f(x)$ in $\mathbb R^n$.
Citation: Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905
References:
[1]

D. R. Adams, On the existence of capacitary strong type estimates in $\mathbf R^n$,, Ark. Mat., 14 (1976), 125.  doi: 10.1007/BF02385830.  Google Scholar

[2]

D. R. Adams, Capacity and blow-up for the $3+1$ dimensional wave opartor,, Forum Math. 20 (2008), 20 (2008), 341.  doi: 10.1515/FORUM.2008.017.  Google Scholar

[3]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, A Series of Comprehensive Studies in Mathematics, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[4]

D. R. Adams and J. Xiao, Strong type estimates for homogeneous Besov capacities,, Math. Ann. 325 (2003), 325 (2003), 695.  doi: 10.1007/s00208-002-0396-3.  Google Scholar

[5]

J. Bisquert, Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination,, Physical Review E, 72 (2005).  doi: 10.1103/PhysRevE.72.011109.  Google Scholar

[6]

R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes,, Trans. Amer. Math. Soc., 95 (1960), 263.  doi: 10.1090/S0002-9947-1960-0119247-6.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Equ., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

D. Chamorro, Remarks on a Fractional Diffusion Transport Equation with Applications to the Dissipative Quasi-Geostrophic Equation,, hal-00505027, (2011).   Google Scholar

[10]

J. Chen, Q. Deng, Y. Ding and D. Fan, Estimates on fractional power dissipatve equations in function spaces,, Nonlinear Anal., 75 (2012), 2959.  doi: 10.1016/j.na.2011.11.039.  Google Scholar

[11]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar

[12]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Anal., 30 (1999), 937.  doi: 10.1137/S0036141098337333.  Google Scholar

[13]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Commmun. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[14]

E. B. Fabes, B. F. Jones and N. M. Riviere, The initial value problem for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 45 (1972), 222.  doi: 10.1007/BF00281533.  Google Scholar

[15]

H. Federer, Geometric Measure Theory,, Springer-Verlag, (1969).   Google Scholar

[16]

R. Jiang, J. Xiao, D. Yang and Z. Zhai, Regularity and capacity for the fractional dissipative operator,, , ().   Google Scholar

[17]

D. Li, On a frequency localized Bernstein inequality and some generalized Poincare-type inequalities,, Math. Res. Lett., 20 (2013), 933.  doi: 10.4310/MRL.2013.v20.n5.a9.  Google Scholar

[18]

V. G. Maz'ya and Yu. V. Netrusov, Some counterexamples for the theory of Sobolev spaces on bad domains,, Potential Anal., 4 (1995), 47.  doi: 10.1007/BF01048966.  Google Scholar

[19]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[20]

M. Nishio, K. Shimomura and N. Suzuki, $\alpha$-parabolic Bergman spaces,, Osaka J. Math., 42 (2005), 133.   Google Scholar

[21]

M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson type measures on parabolic Bergman spaces,, Hokkaido Math. J., 36 (2007), 563.  doi: 10.14492/hokmj/1277472867.  Google Scholar

[22]

M. Nishio, N. Suzuki and M. Yamada, Compact Toeplitz operators on parabolic Bergman spaces,, Hiroshima Math. J., 38 (2008), 177.   Google Scholar

[23]

M. Nishio, N. Suzuki and M. Yamada, Carleson inequalities on parabolic Bergman spaces,, Tohoku Math. J., 62 (2010), 269.  doi: 10.2748/tmj/1277298649.  Google Scholar

[24]

M. Nishio and M. Yamada, Carleson type measures on parabolic Bergman spaces,, J. Math. Soc. Japan, 58 (2006), 83.  doi: 10.2969/jmsj/1145287094.  Google Scholar

[25]

L. Vázquez, J. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of thermodynamics,, Frac. Calc. Appl. Anal., 14 (2011), 334.  doi: 10.2478/s13540-011-0021-9.  Google Scholar

[26]

G. Wu and J. Yuan, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces,, J. Math. Anal. Appl., 340 (2008), 1326.  doi: 10.1016/j.jmaa.2007.09.060.  Google Scholar

[27]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Electron. J. Differential Equations, 2001 (2001), 1.   Google Scholar

[28]

J. Wu, Lower Bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

[29]

J. Xiao, Carleson embeddings for Sobolev spaces via heat equation,, J. Diff. Equ., 224 (2006), 277.  doi: 10.1016/j.jde.2005.07.014.  Google Scholar

[30]

J. Xiao, Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation,, Adv. Math., 207 (2006), 828.  doi: 10.1016/j.aim.2006.01.010.  Google Scholar

[31]

L. Xie and X. Zhang, Heat kernel estimates for critical fractional diffusion operator,, , ().   Google Scholar

[32]

Z. Zhai, Strichartz type estimates for fractional heat equations,, J. Math. Anal. Appl., 356 (2009), 642.  doi: 10.1016/j.jmaa.2009.03.051.  Google Scholar

[33]

Z. Zhai, Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces,, Nonlinear Anal., 73 (2010), 2611.  doi: 10.1016/j.na.2010.06.040.  Google Scholar

show all references

References:
[1]

D. R. Adams, On the existence of capacitary strong type estimates in $\mathbf R^n$,, Ark. Mat., 14 (1976), 125.  doi: 10.1007/BF02385830.  Google Scholar

[2]

D. R. Adams, Capacity and blow-up for the $3+1$ dimensional wave opartor,, Forum Math. 20 (2008), 20 (2008), 341.  doi: 10.1515/FORUM.2008.017.  Google Scholar

[3]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, A Series of Comprehensive Studies in Mathematics, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[4]

D. R. Adams and J. Xiao, Strong type estimates for homogeneous Besov capacities,, Math. Ann. 325 (2003), 325 (2003), 695.  doi: 10.1007/s00208-002-0396-3.  Google Scholar

[5]

J. Bisquert, Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination,, Physical Review E, 72 (2005).  doi: 10.1103/PhysRevE.72.011109.  Google Scholar

[6]

R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes,, Trans. Amer. Math. Soc., 95 (1960), 263.  doi: 10.1090/S0002-9947-1960-0119247-6.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Equ., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

D. Chamorro, Remarks on a Fractional Diffusion Transport Equation with Applications to the Dissipative Quasi-Geostrophic Equation,, hal-00505027, (2011).   Google Scholar

[10]

J. Chen, Q. Deng, Y. Ding and D. Fan, Estimates on fractional power dissipatve equations in function spaces,, Nonlinear Anal., 75 (2012), 2959.  doi: 10.1016/j.na.2011.11.039.  Google Scholar

[11]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar

[12]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Anal., 30 (1999), 937.  doi: 10.1137/S0036141098337333.  Google Scholar

[13]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Commmun. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[14]

E. B. Fabes, B. F. Jones and N. M. Riviere, The initial value problem for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 45 (1972), 222.  doi: 10.1007/BF00281533.  Google Scholar

[15]

H. Federer, Geometric Measure Theory,, Springer-Verlag, (1969).   Google Scholar

[16]

R. Jiang, J. Xiao, D. Yang and Z. Zhai, Regularity and capacity for the fractional dissipative operator,, , ().   Google Scholar

[17]

D. Li, On a frequency localized Bernstein inequality and some generalized Poincare-type inequalities,, Math. Res. Lett., 20 (2013), 933.  doi: 10.4310/MRL.2013.v20.n5.a9.  Google Scholar

[18]

V. G. Maz'ya and Yu. V. Netrusov, Some counterexamples for the theory of Sobolev spaces on bad domains,, Potential Anal., 4 (1995), 47.  doi: 10.1007/BF01048966.  Google Scholar

[19]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[20]

M. Nishio, K. Shimomura and N. Suzuki, $\alpha$-parabolic Bergman spaces,, Osaka J. Math., 42 (2005), 133.   Google Scholar

[21]

M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson type measures on parabolic Bergman spaces,, Hokkaido Math. J., 36 (2007), 563.  doi: 10.14492/hokmj/1277472867.  Google Scholar

[22]

M. Nishio, N. Suzuki and M. Yamada, Compact Toeplitz operators on parabolic Bergman spaces,, Hiroshima Math. J., 38 (2008), 177.   Google Scholar

[23]

M. Nishio, N. Suzuki and M. Yamada, Carleson inequalities on parabolic Bergman spaces,, Tohoku Math. J., 62 (2010), 269.  doi: 10.2748/tmj/1277298649.  Google Scholar

[24]

M. Nishio and M. Yamada, Carleson type measures on parabolic Bergman spaces,, J. Math. Soc. Japan, 58 (2006), 83.  doi: 10.2969/jmsj/1145287094.  Google Scholar

[25]

L. Vázquez, J. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of thermodynamics,, Frac. Calc. Appl. Anal., 14 (2011), 334.  doi: 10.2478/s13540-011-0021-9.  Google Scholar

[26]

G. Wu and J. Yuan, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces,, J. Math. Anal. Appl., 340 (2008), 1326.  doi: 10.1016/j.jmaa.2007.09.060.  Google Scholar

[27]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Electron. J. Differential Equations, 2001 (2001), 1.   Google Scholar

[28]

J. Wu, Lower Bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

[29]

J. Xiao, Carleson embeddings for Sobolev spaces via heat equation,, J. Diff. Equ., 224 (2006), 277.  doi: 10.1016/j.jde.2005.07.014.  Google Scholar

[30]

J. Xiao, Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation,, Adv. Math., 207 (2006), 828.  doi: 10.1016/j.aim.2006.01.010.  Google Scholar

[31]

L. Xie and X. Zhang, Heat kernel estimates for critical fractional diffusion operator,, , ().   Google Scholar

[32]

Z. Zhai, Strichartz type estimates for fractional heat equations,, J. Math. Anal. Appl., 356 (2009), 642.  doi: 10.1016/j.jmaa.2009.03.051.  Google Scholar

[33]

Z. Zhai, Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces,, Nonlinear Anal., 73 (2010), 2611.  doi: 10.1016/j.na.2010.06.040.  Google Scholar

[1]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[4]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[5]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[6]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[7]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[8]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[9]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[10]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[11]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[12]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[13]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[14]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[15]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[16]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]