-
Previous Article
Topological defects in the abelian Higgs model
- DCDS Home
- This Issue
-
Next Article
$L^q$-Extensions of $L^p$-spaces by fractional diffusion equations
Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem
1. | Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China, China |
2. | Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada |
References:
[1] |
A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651. Google Scholar |
[2] |
J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830.
doi: 10.1016/j.jmaa.2009.02.033. |
[3] |
J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196.
doi: 10.1016/j.jde.2007.05.007. |
[4] |
J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071.
doi: 10.3934/dcds.2008.21.1071. |
[5] |
E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631.
doi: 10.1007/BF02218851. |
[6] |
C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1.
|
[7] |
M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.
doi: 10.1006/jdeq.1993.1050. |
[8] |
A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1.
doi: 10.1007/BF01272557. |
[9] |
A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235.
doi: 10.1016/j.jde.2007.11.005. |
[10] |
A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.
doi: 10.1016/j.na.2010.12.004. |
[11] |
A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853.
|
[12] |
A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331.
doi: 10.1090/S0002-9939-2011-10992-4. |
[13] |
A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181.
doi: 10.1007/s10231-010-0178-6. |
[14] |
A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169.
doi: 10.3934/dcds.2011.29.169. |
[15] |
D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.
doi: 10.1016/j.jde.2004.10.031. |
[16] |
A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109.
doi: 10.1090/S0002-9939-1987-0866438-7. |
[17] |
J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844.
doi: 10.1137/S003614100241037X. |
[18] |
J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21.
doi: 10.1007/s10884-005-2937-4. |
[19] |
Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227.
doi: 10.1002/mma.2594. |
[20] |
R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491.
doi: 10.1006/jdeq.1996.0103. |
[21] |
A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304.
doi: 10.1002/asna.200510537. |
[22] |
I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445.
doi: 10.1006/jdeq.2000.3995. |
[23] |
J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985).
doi: 10.1007/978-1-4757-4575-7. |
[24] |
W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240.
doi: 10.1086/156603. |
[25] |
D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257.
doi: 10.1002/asna.2113130408. |
[26] |
D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487. Google Scholar |
[27] |
D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163. Google Scholar |
[28] |
C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971).
|
[29] |
S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489.
doi: 10.1016/0362-546X(90)90037-H. |
[30] |
P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.
|
[31] |
P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.
doi: 10.1016/S0022-0396(02)00152-3. |
[32] |
P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.
doi: 10.1016/j.jde.2006.08.006. |
[33] |
P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195.
doi: 10.1017/S0308210505000739. |
[34] |
P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101.
doi: 10.1002/mana.200310033. |
[35] |
P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591.
doi: 10.1016/j.na.2003.10.005. |
[36] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996).
doi: 10.1007/978-3-642-61453-8. |
[37] |
P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067.
doi: 10.1002/mma.413. |
[38] |
M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137.
doi: 10.1112/S0024610702003939. |
[39] |
M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.
|
show all references
References:
[1] |
A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651. Google Scholar |
[2] |
J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830.
doi: 10.1016/j.jmaa.2009.02.033. |
[3] |
J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196.
doi: 10.1016/j.jde.2007.05.007. |
[4] |
J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071.
doi: 10.3934/dcds.2008.21.1071. |
[5] |
E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631.
doi: 10.1007/BF02218851. |
[6] |
C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1.
|
[7] |
M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.
doi: 10.1006/jdeq.1993.1050. |
[8] |
A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1.
doi: 10.1007/BF01272557. |
[9] |
A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235.
doi: 10.1016/j.jde.2007.11.005. |
[10] |
A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.
doi: 10.1016/j.na.2010.12.004. |
[11] |
A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853.
|
[12] |
A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331.
doi: 10.1090/S0002-9939-2011-10992-4. |
[13] |
A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181.
doi: 10.1007/s10231-010-0178-6. |
[14] |
A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169.
doi: 10.3934/dcds.2011.29.169. |
[15] |
D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.
doi: 10.1016/j.jde.2004.10.031. |
[16] |
A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109.
doi: 10.1090/S0002-9939-1987-0866438-7. |
[17] |
J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844.
doi: 10.1137/S003614100241037X. |
[18] |
J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21.
doi: 10.1007/s10884-005-2937-4. |
[19] |
Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227.
doi: 10.1002/mma.2594. |
[20] |
R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491.
doi: 10.1006/jdeq.1996.0103. |
[21] |
A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304.
doi: 10.1002/asna.200510537. |
[22] |
I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445.
doi: 10.1006/jdeq.2000.3995. |
[23] |
J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985).
doi: 10.1007/978-1-4757-4575-7. |
[24] |
W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240.
doi: 10.1086/156603. |
[25] |
D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257.
doi: 10.1002/asna.2113130408. |
[26] |
D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487. Google Scholar |
[27] |
D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163. Google Scholar |
[28] |
C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971).
|
[29] |
S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489.
doi: 10.1016/0362-546X(90)90037-H. |
[30] |
P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.
|
[31] |
P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.
doi: 10.1016/S0022-0396(02)00152-3. |
[32] |
P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.
doi: 10.1016/j.jde.2006.08.006. |
[33] |
P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195.
doi: 10.1017/S0308210505000739. |
[34] |
P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101.
doi: 10.1002/mana.200310033. |
[35] |
P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591.
doi: 10.1016/j.na.2003.10.005. |
[36] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996).
doi: 10.1007/978-3-642-61453-8. |
[37] |
P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067.
doi: 10.1002/mma.413. |
[38] |
M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137.
doi: 10.1112/S0024610702003939. |
[39] |
M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.
|
[1] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[2] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[3] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[4] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[5] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[6] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[7] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[10] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[11] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[12] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[13] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[14] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[15] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[16] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[17] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[18] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[19] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[20] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]