May  2015, 35(5): 1921-1932. doi: 10.3934/dcds.2015.35.1921

Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem

1. 

Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China, China

2. 

Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada

Received  January 2014 Revised  October 2014 Published  December 2014

For the Gylden-Meshcherskii-type problem with a periodically cha-nging gravitational parameter, we prove the existence of radially periodic solutions with high angular momentum, which are Lyapunov stable in the radial direction.
Citation: Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921
References:
[1]

A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651.   Google Scholar

[2]

J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830.  doi: 10.1016/j.jmaa.2009.02.033.  Google Scholar

[3]

J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196.  doi: 10.1016/j.jde.2007.05.007.  Google Scholar

[4]

J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071.  doi: 10.3934/dcds.2008.21.1071.  Google Scholar

[5]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631.  doi: 10.1007/BF02218851.  Google Scholar

[6]

C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1.   Google Scholar

[7]

M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.  doi: 10.1006/jdeq.1993.1050.  Google Scholar

[8]

A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1.  doi: 10.1007/BF01272557.  Google Scholar

[9]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235.  doi: 10.1016/j.jde.2007.11.005.  Google Scholar

[10]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[11]

A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853.   Google Scholar

[12]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331.  doi: 10.1090/S0002-9939-2011-10992-4.  Google Scholar

[13]

A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181.  doi: 10.1007/s10231-010-0178-6.  Google Scholar

[14]

A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169.  doi: 10.3934/dcds.2011.29.169.  Google Scholar

[15]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.  doi: 10.1016/j.jde.2004.10.031.  Google Scholar

[16]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109.  doi: 10.1090/S0002-9939-1987-0866438-7.  Google Scholar

[17]

J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844.  doi: 10.1137/S003614100241037X.  Google Scholar

[18]

J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21.  doi: 10.1007/s10884-005-2937-4.  Google Scholar

[19]

Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227.  doi: 10.1002/mma.2594.  Google Scholar

[20]

R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491.  doi: 10.1006/jdeq.1996.0103.  Google Scholar

[21]

A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304.  doi: 10.1002/asna.200510537.  Google Scholar

[22]

I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445.  doi: 10.1006/jdeq.2000.3995.  Google Scholar

[23]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985).  doi: 10.1007/978-1-4757-4575-7.  Google Scholar

[24]

W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240.  doi: 10.1086/156603.  Google Scholar

[25]

D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257.  doi: 10.1002/asna.2113130408.  Google Scholar

[26]

D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487.   Google Scholar

[27]

D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163.   Google Scholar

[28]

C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971).   Google Scholar

[29]

S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489.  doi: 10.1016/0362-546X(90)90037-H.  Google Scholar

[30]

P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.   Google Scholar

[31]

P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.  doi: 10.1016/S0022-0396(02)00152-3.  Google Scholar

[32]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.  doi: 10.1016/j.jde.2006.08.006.  Google Scholar

[33]

P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195.  doi: 10.1017/S0308210505000739.  Google Scholar

[34]

P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101.  doi: 10.1002/mana.200310033.  Google Scholar

[35]

P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591.  doi: 10.1016/j.na.2003.10.005.  Google Scholar

[36]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

[37]

P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067.  doi: 10.1002/mma.413.  Google Scholar

[38]

M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137.  doi: 10.1112/S0024610702003939.  Google Scholar

[39]

M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.   Google Scholar

show all references

References:
[1]

A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651.   Google Scholar

[2]

J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830.  doi: 10.1016/j.jmaa.2009.02.033.  Google Scholar

[3]

J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196.  doi: 10.1016/j.jde.2007.05.007.  Google Scholar

[4]

J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071.  doi: 10.3934/dcds.2008.21.1071.  Google Scholar

[5]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631.  doi: 10.1007/BF02218851.  Google Scholar

[6]

C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1.   Google Scholar

[7]

M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.  doi: 10.1006/jdeq.1993.1050.  Google Scholar

[8]

A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1.  doi: 10.1007/BF01272557.  Google Scholar

[9]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235.  doi: 10.1016/j.jde.2007.11.005.  Google Scholar

[10]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[11]

A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853.   Google Scholar

[12]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331.  doi: 10.1090/S0002-9939-2011-10992-4.  Google Scholar

[13]

A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181.  doi: 10.1007/s10231-010-0178-6.  Google Scholar

[14]

A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169.  doi: 10.3934/dcds.2011.29.169.  Google Scholar

[15]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.  doi: 10.1016/j.jde.2004.10.031.  Google Scholar

[16]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109.  doi: 10.1090/S0002-9939-1987-0866438-7.  Google Scholar

[17]

J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844.  doi: 10.1137/S003614100241037X.  Google Scholar

[18]

J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21.  doi: 10.1007/s10884-005-2937-4.  Google Scholar

[19]

Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227.  doi: 10.1002/mma.2594.  Google Scholar

[20]

R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491.  doi: 10.1006/jdeq.1996.0103.  Google Scholar

[21]

A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304.  doi: 10.1002/asna.200510537.  Google Scholar

[22]

I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445.  doi: 10.1006/jdeq.2000.3995.  Google Scholar

[23]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985).  doi: 10.1007/978-1-4757-4575-7.  Google Scholar

[24]

W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240.  doi: 10.1086/156603.  Google Scholar

[25]

D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257.  doi: 10.1002/asna.2113130408.  Google Scholar

[26]

D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487.   Google Scholar

[27]

D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163.   Google Scholar

[28]

C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971).   Google Scholar

[29]

S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489.  doi: 10.1016/0362-546X(90)90037-H.  Google Scholar

[30]

P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.   Google Scholar

[31]

P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.  doi: 10.1016/S0022-0396(02)00152-3.  Google Scholar

[32]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.  doi: 10.1016/j.jde.2006.08.006.  Google Scholar

[33]

P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195.  doi: 10.1017/S0308210505000739.  Google Scholar

[34]

P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101.  doi: 10.1002/mana.200310033.  Google Scholar

[35]

P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591.  doi: 10.1016/j.na.2003.10.005.  Google Scholar

[36]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

[37]

P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067.  doi: 10.1002/mma.413.  Google Scholar

[38]

M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137.  doi: 10.1112/S0024610702003939.  Google Scholar

[39]

M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.   Google Scholar

[1]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[2]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[3]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[6]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[7]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[10]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[11]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[12]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[13]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[14]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[15]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[16]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[17]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[18]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[19]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[20]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]