May  2015, 35(5): 1969-2009. doi: 10.3934/dcds.2015.35.1969

Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity

1. 

Laboratoire de Mathématiques et d'Informatique (LMI), INSA de Rouen, Avenue de l'Université, 76 801 Saint Etienne du Rouvray Cedex

2. 

Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417, Zielona Góra, Poland

Received  January 2013 Revised  September 2014 Published  December 2014

In our previous paper [4], we tried to extract some particular structures of the higher variational equations (the $\mathrm{VE}_p$ for $p \geq 2$), along particular solutions of natural Hamiltonian systems with homogeneous potential of degree $k=\pm 2$. We investigate these variational equations in a framework of differential Galois theory. Our aim was to obtain new obstructions for complete integrability. In this paper we extend results of [4] to the complementary cases, when the homogeneous potential has integer degree of homogeneity $k\in\mathbb{Z}$, and $|k| \geq 3$. Since these cases are much more general and complicated, we restrict our study only to the second order variational equation $\mathrm{VE}_2$.
Citation: Guillaume Duval, Andrzej J. Maciejewski. Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1969-2009. doi: 10.3934/dcds.2015.35.1969
References:
[1]

A. Aparicio Monforte and J.-A. Weil, A reduction method for higher order variational equations of Hamiltonian systems,, In Symmetries and related topics in differential and difference equations, 549 (2011), 1.  doi: 10.1090/conm/549/10850.  Google Scholar

[2]

T. Combot, Non-integrability of the equal mass; n-body problem with non-zero angular momentum,, Celestial Mechanics and Dynamical Astronomy, 114 (2012), 319.  doi: 10.1007/s10569-012-9417-z.  Google Scholar

[3]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839.  doi: 10.5802/aif.2510.  Google Scholar

[4]

G. Duval and A. J. Maciejewski, Integrability of Homogeneous potential of degree $k = \pm 2$. An application of higher variational equations,, submited, (2012).   Google Scholar

[5]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113.   Google Scholar

[6]

E. G. C. Poole, Introduction to the Theory of Linear Differential Equations,, Dover Publications Inc., (1960).   Google Scholar

show all references

References:
[1]

A. Aparicio Monforte and J.-A. Weil, A reduction method for higher order variational equations of Hamiltonian systems,, In Symmetries and related topics in differential and difference equations, 549 (2011), 1.  doi: 10.1090/conm/549/10850.  Google Scholar

[2]

T. Combot, Non-integrability of the equal mass; n-body problem with non-zero angular momentum,, Celestial Mechanics and Dynamical Astronomy, 114 (2012), 319.  doi: 10.1007/s10569-012-9417-z.  Google Scholar

[3]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839.  doi: 10.5802/aif.2510.  Google Scholar

[4]

G. Duval and A. J. Maciejewski, Integrability of Homogeneous potential of degree $k = \pm 2$. An application of higher variational equations,, submited, (2012).   Google Scholar

[5]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113.   Google Scholar

[6]

E. G. C. Poole, Introduction to the Theory of Linear Differential Equations,, Dover Publications Inc., (1960).   Google Scholar

[1]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[2]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[3]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[4]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[5]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[8]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[9]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[10]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[11]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[12]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[13]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[14]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[15]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[16]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[17]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[18]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[19]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[20]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]