Citation: |
[1] |
M. S. Baouendi and C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application to the Cauchy problems, J. Differential Equations, 48 (1983), 241-268.doi: 10.1016/0022-0396(83)90051-7. |
[2] |
A. Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.doi: 10.1137/090748500. |
[3] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661. |
[4] |
J. Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase space analysis of partial differential equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, CRM series, Pisa, I (2004), 53-135. |
[5] |
K. S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves, Physica D, 162 (2002), 9-33.doi: 10.1016/S0167-2789(01)00364-5. |
[6] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757. |
[7] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. Lond., 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701. |
[8] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5. |
[9] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586. |
[10] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 303-328. |
[11] |
A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.doi: 10.1007/PL00004793. |
[12] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7. |
[13] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12. |
[14] |
A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.doi: 10.1088/0266-5611/22/6/017. |
[15] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2. |
[16] |
A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. |
[17] |
R. Danchin, A few remarks on the Camassa-Holm equation, Differential and Integral Equations, 14 (2001), 953-988. |
[18] |
R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.doi: 10.1016/S0022-0396(03)00096-2. |
[19] |
A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and perturbation theory (Rome 1998), World Sci. Publ., River Edge, NJ, (1999), 23-37. |
[20] |
A. Degasperis, D. D. Holm and A. N. W. Hone, Integrable and non-integrable equations with peakons, Nonlinear physics: Theory and experiment (Gallipoli 2002), World Sci. Publ., River Edge, NJ, II (2003), 37-43.doi: 10.1142/9789812704467_0005. |
[21] |
J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485.doi: 10.1016/j.jfa.2006.03.022. |
[22] |
J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117.doi: 10.1512/iumj.2007.56.3040. |
[23] |
Y. Fu, G. L. Gui, Y. Liu and C. Z. Qu, On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity, J. Differential Equations, 255 (2013), 1905-1938.doi: 10.1016/j.jde.2013.05.024. |
[24] |
Y. Fu, Y. Liu and C. Z. Qu, On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations, J. Funct. Anal., 262 (2012), 3125-3158.doi: 10.1016/j.jfa.2012.01.009. |
[25] |
B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4 (1981/1982), 47-66. doi: 10.1016/0167-2789(81)90004-X. |
[26] |
G. L. Gui, Y. Liu, P. J. Olver and C. Z. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.doi: 10.1007/s00220-012-1566-0. |
[27] |
A. A. Himonas and G. Misiołek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.doi: 10.1007/s00208-003-0466-1. |
[28] |
A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A., 41 (2008), 372002, 10 pp.doi: 10.1088/1751-8113/41/37/372002. |
[29] |
A. N. W. Hone, H. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinearintegrable Camassa-Holm type equation, Dyn. Partial Differ. Equ., 6 (2009), 253-289.doi: 10.4310/DPDE.2009.v6.n3.a3. |
[30] |
J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.doi: 10.1137/0151075. |
[31] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.doi: 10.1017/S0022112001007224. |
[32] |
T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lecture Notes in Math., 448, Springer Verlag, Berlin, (1975), 25-70. |
[33] |
B. Khesin, J. Lenells and G. Misiołek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann., 342 (2008), 617-656.doi: 10.1007/s00208-008-0250-3. |
[34] |
S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.doi: 10.1063/1.532690. |
[35] |
J. Lenells, G. Misiołek and F. Tiǧlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, Comm. Math. Phys., 299 (2010), 129-161.doi: 10.1007/s00220-010-1069-9. |
[36] |
Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683. |
[37] |
Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.doi: 10.1007/s00220-006-0082-5. |
[38] |
H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., 17 (2007), 169-198.doi: 10.1007/s00332-006-0803-3. |
[39] |
G. Misiołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7. |
[40] |
V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A., 42 (2009), 342002, 14 pp.doi: 10.1088/1751-8113/42/34/342002. |
[41] |
P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.doi: 10.1103/PhysRevE.53.1900. |
[42] |
C. Z. Qu, Y. Fu and Y. Liu, Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477.doi: 10.1016/j.jfa.2013.09.021. |
[43] |
T. Schäfer and C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D, 196 (2004), 90-105.doi: 10.1016/j.physd.2004.04.007. |
[44] |
J. Schiff, The Camassa-Holm equation: A loop group approach, Physica D, 121 (1998), 24-43.doi: 10.1016/S0167-2789(98)00099-2. |
[45] |
J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. |
[46] |
F. Tiǧlay, The periodic Cauchy problem of the modified Hunter-Saxton equation, J. Evol. Equ., 5 (2005), 509-527.doi: 10.1007/s00028-005-0215-x. |
[47] |
F. Tiǧlay, The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Not., 2011 (2011), 4633-4648.doi: 10.1093/imrn/rnq267. |