May  2015, 35(5): 2041-2051. doi: 10.3934/dcds.2015.35.2041

Blow-up for the two-component Camassa--Holm system

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim

Received  June 2014 Revised  August 2014 Published  December 2014

Following conservative solutions of the two-component Camassa--Holm system $u_t-u_{txx}+3uu_x-2u_xu_{xx}-uu_{xxx}+\rho\rho_x=0$, $\rho_t+(u\rho)_x=0$ along characteristics, we determine if wave breaking occurs in the nearby future or not, for initial data $u_0\in H^1(\mathbb{R})$ and $\rho_0\in L^2(\mathbb{R})$.
Citation: Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Clarendon Press, (2000).   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and Applications, 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system,, Inter. Math Research Notices, (2011), 1381.  doi: 10.1093/imrn/rnq118.  Google Scholar

[6]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Physics Letters A, 372 (2008), 7129.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[7]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[8]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[9]

Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3064810.  Google Scholar

[10]

K. Grunert, H. Holden and X. Raynaud, Global solutions for the two-component Camassa-Holm system,, Comm. Partial Differential Equations, 37 (2012), 2245.  doi: 10.1080/03605302.2012.683505.  Google Scholar

[11]

K. Grunert, H. Holden and X. Raynaud, Global dissipative solutions of the two-component Camassa-Holm system for initial data with nonvanishing asymptotics,, Nonlinear Anal. Real World Appl., 17 (2014), 203.  doi: 10.1016/j.nonrwa.2013.12.001.  Google Scholar

[12]

K. Grunert, H. Holden and X. Raynaud, A continuous interpolation between conservative and dissipative solutions for the Camassa-Holm system,, , ().   Google Scholar

[13]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena (eds. H. Holden and K. H. Karlsen), 526 (2010), 199.  doi: 10.1090/conm/526/10382.  Google Scholar

[14]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Ann. I. H. Poincaré - AN, 28 (2011), 623.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[15]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[16]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, J. Funct. Anal., 258 (2010), 4251.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[17]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[18]

Z. Guo and Y. Zhou, On solutions to a two-component generalized Camassa-Holm equation,, Stud. Appl. Math., 124 (2010), 307.  doi: 10.1111/j.1467-9590.2009.00472.x.  Google Scholar

[19]

D. Henry, Infnite propagation speed for a two-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[20]

H. Holden and X. Raynaud, Global conservative solutions for the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[21]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.  doi: 10.3934/dcds.2009.24.1047.  Google Scholar

[22]

Q. Hu, Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa-Holm system,, Applicable Analysis, 92 (2013), 398.  doi: 10.1080/00036811.2011.621893.  Google Scholar

[23]

P. A. Kuz'min, Two-component generalizations of the Camassa-Holm equation,, Math. Notes, 81 (2007), 130.  doi: 10.1134/S0001434607010142.  Google Scholar

[24]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm shallow water system,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3562928.  Google Scholar

[25]

M. Yuen, Perturbational blowup solutions to the 2-component Camassa-Holm equations,, J. Math. Anal. Appl., 390 (2012), 596.  doi: 10.1016/j.jmaa.2011.05.016.  Google Scholar

[26]

P. Zhang and Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, Int. Math. Res. Not. IMRN, 11 (2010), 1981.  doi: 10.1093/imrn/rnp211.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Clarendon Press, (2000).   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and Applications, 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system,, Inter. Math Research Notices, (2011), 1381.  doi: 10.1093/imrn/rnq118.  Google Scholar

[6]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Physics Letters A, 372 (2008), 7129.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[7]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[8]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[9]

Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3064810.  Google Scholar

[10]

K. Grunert, H. Holden and X. Raynaud, Global solutions for the two-component Camassa-Holm system,, Comm. Partial Differential Equations, 37 (2012), 2245.  doi: 10.1080/03605302.2012.683505.  Google Scholar

[11]

K. Grunert, H. Holden and X. Raynaud, Global dissipative solutions of the two-component Camassa-Holm system for initial data with nonvanishing asymptotics,, Nonlinear Anal. Real World Appl., 17 (2014), 203.  doi: 10.1016/j.nonrwa.2013.12.001.  Google Scholar

[12]

K. Grunert, H. Holden and X. Raynaud, A continuous interpolation between conservative and dissipative solutions for the Camassa-Holm system,, , ().   Google Scholar

[13]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena (eds. H. Holden and K. H. Karlsen), 526 (2010), 199.  doi: 10.1090/conm/526/10382.  Google Scholar

[14]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Ann. I. H. Poincaré - AN, 28 (2011), 623.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[15]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[16]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, J. Funct. Anal., 258 (2010), 4251.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[17]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[18]

Z. Guo and Y. Zhou, On solutions to a two-component generalized Camassa-Holm equation,, Stud. Appl. Math., 124 (2010), 307.  doi: 10.1111/j.1467-9590.2009.00472.x.  Google Scholar

[19]

D. Henry, Infnite propagation speed for a two-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[20]

H. Holden and X. Raynaud, Global conservative solutions for the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[21]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.  doi: 10.3934/dcds.2009.24.1047.  Google Scholar

[22]

Q. Hu, Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa-Holm system,, Applicable Analysis, 92 (2013), 398.  doi: 10.1080/00036811.2011.621893.  Google Scholar

[23]

P. A. Kuz'min, Two-component generalizations of the Camassa-Holm equation,, Math. Notes, 81 (2007), 130.  doi: 10.1134/S0001434607010142.  Google Scholar

[24]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm shallow water system,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3562928.  Google Scholar

[25]

M. Yuen, Perturbational blowup solutions to the 2-component Camassa-Holm equations,, J. Math. Anal. Appl., 390 (2012), 596.  doi: 10.1016/j.jmaa.2011.05.016.  Google Scholar

[26]

P. Zhang and Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, Int. Math. Res. Not. IMRN, 11 (2010), 1981.  doi: 10.1093/imrn/rnp211.  Google Scholar

[1]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[5]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[6]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[7]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[8]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[9]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[10]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[11]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[12]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[13]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[14]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[17]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[18]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[19]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[20]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (123)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]