\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case

Abstract Related Papers Cited by
  • We obtain a parametric (and an orbital) normal form for any non-degenerate perturbation of the generalized saddle-node case of Bogdanov--Takens singularity. Explicit formulas are derived and greatly simplified for an efficient implementation in any computer algebra system. A Maple program is prepared for an automatic parametric normal form computation. A section is devoted to present some practical formulas which avoid technical details of the paper.
    Mathematics Subject Classification: Primary: 34C20; Secondary: 34A34, 16W50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Algaba, E. Freire, E. Gamero and C. Garcia, Quasi-homogeneous normal forms, J. Comp. and Appl. Math., 150 (2003), 193-216.doi: 10.1016/S0377-0427(02)00660-X.

    [2]

    A. Baider and R. C. Churchill, Unique normal forms for planar vector fields, Math. Z., 199 (1988), 303-310.doi: 10.1007/BF01159780.

    [3]

    A. Baider and J. A. Sanders, Unique normal forms: The nilpotent Hamiltonian case, J. Differential Equations, 92 (1991), 282-304.doi: 10.1016/0022-0396(91)90050-J.

    [4]

    A. Baider and J. A. Sanders, Further reductions of the Takens-Bogdanov normal form, J. Differential Equations, 99 (1992), 205-244.doi: 10.1016/0022-0396(92)90022-F.

    [5]

    G. Chen and J. D. Dora, Further reductions of normal forms for dynamical systems, J. Differential Equations, 166 (2000), 79-106.doi: 10.1006/jdeq.2000.3783.

    [6]

    G. Chen, D. Wang and X. Wang, Unique normal forms for nilpotent planar vector fields, Internat. J. Bifur. Chaos, 12 (2002), 2159-2174.doi: 10.1142/S0218127402005741.

    [7]

    M. Gazor and F. Mokhtari, Normal forms of Hopf-Zero singularity, preprint, arXiv:1210.4467v4.

    [8]

    M. Gazor and F. Mokhtari, Volume-preserving normal forms of Hopf-Zero singularity, Nonlinearity, 26 (2013), 2809-2832.doi: 10.1088/0951-7715/26/10/2809.

    [9]

    M. Gazor, F. Mokhtari and J. A. Sanders, Normal forms for Hopf-Zero singularities with nonconservative nonlinear part, J. Differential Equations, 254 (2013), 1571-1581.doi: 10.1016/j.jde.2012.11.004.

    [10]

    M. Gazor and P. Yu, Spectral sequences and parametric normal forms, J. Differential Equations, 252 (2012), 1003-1031.doi: 10.1016/j.jde.2011.09.043.

    [11]

    M. Gazor and P. Yu, Formal decomposition method and parametric normal forms, Internat. J. Bifur. Chaos, 20 (2010), 3487-3515.doi: 10.1142/S0218127410027830.

    [12]

    M. Gazor and P. Yu, Infinite order parametric normal form of Hopf singularity, Internat. J. Bifur. Chaos, 18 (2008), 3393-3408.doi: 10.1142/S0218127408022445.

    [13]

    H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations, 132 (1996), 293-318.doi: 10.1006/jdeq.1996.0181.

    [14]

    M. Moazeni, Asymptotic Unfoldings and Normal Forms of the Generalized Saddle-Node case of Bogdanov-Takens Singularity, Master Thesis (in persian), Isfahan University of Technology, Isfahan, Iran, 2011.

    [15]

    J. Murdock, Asymptotic unfoldings of dynamical systems by normalizing beyond the normal form, J. Differential Equations, 143 (1998), 151-190.doi: 10.1006/jdeq.1997.3368.

    [16]

    J. Murdock, Normal Forms and Unfoldings for Local Dynamical Systems, Springer, New York, 2003.doi: 10.1007/b97515.

    [17]

    J. Murdock, Hypernormal form theory: Foundations and algorithms, J. Differential Equations, 205 (2004), 424-465.doi: 10.1016/j.jde.2004.02.015.

    [18]

    J. Murdock and D. Malonza, An improved theory of asymtotic unfoldings, J. Differential Equations, 247 (2009), 685-709.doi: 10.1016/j.jde.2009.04.014.

    [19]

    J. Peng and D. Wang, A suffiecient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf singularities, Internat. J. Bifur. Chaos, 14 (2004), 3337-3345.doi: 10.1142/S0218127404011247.

    [20]

    E. Stróżyna, The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node, Bull. Sci. Math., 126 (2002), 555-579.doi: 10.1016/S0007-4497(02)01127-2.

    [21]

    E. Stróżyna and H. Żoladek, The complete formal normal form for the Bogdanov-Takens singularity, preprint, (2013), private communication.

    [22]

    E. Stróżyna and H. Żoladek, Divergence of the reduction to the multidimensional nilpotent Takens normal form, Nonlinearity, 24 (2011), 3129-3141.doi: 10.1088/0951-7715/24/11/007.

    [23]

    E. Stróżyna and H. Żoladek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, 179 (2002), 479-537.doi: 10.1006/jdeq.2001.4043.

    [24]

    E. Stróżyna and H. Żoladek, Orbital formal normal forms for general Bogdanov-Takens singularity, J. Differential Equations, 193 (2003), 239-259.doi: 10.1016/S0022-0396(03)00137-2.

    [25]

    D. Wang, J. Li, M. Huang and Y. Jiang, Unique normal form of Bogdanos-Takens singularities, J. Differential Equations, 163 (2000), 223-238.doi: 10.1006/jdeq.1999.3739.

    [26]

    J. Li, L. Zhang and D. Wang, Unique normal form of a class of 3 dimensional vector fields with symmetries, J. Differential Equations, 257 (2014), 2341-2359.doi: 10.1016/j.jde.2014.05.039.

    [27]

    P. Yu, Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling, J. Comp. and App. Math., 144 (2002), 359-373.doi: 10.1016/S0377-0427(01)00573-8.

    [28]

    P. Yu and Y. Yuan, A matching pursuit technique for computing the simplest normal forms of vector fields, J. Symbolic Computation, 35 (2003), 591-615.doi: 10.1016/S0747-7171(03)00021-X.

    [29]

    Y. Yuan and P. Yu, Computation of simplest normal forms of differential equations associated with a double-zero eigenvalues, Internat. J. Bifur. Chaos, 11 (2001), 1307-1330.doi: 10.1142/S0218127401002742.

    [30]

    P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity, 16 (2003), 277-300.doi: 10.1088/0951-7715/16/1/317.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return