Citation: |
[1] |
A. Algaba, E. Freire, E. Gamero and C. Garcia, Quasi-homogeneous normal forms, J. Comp. and Appl. Math., 150 (2003), 193-216.doi: 10.1016/S0377-0427(02)00660-X. |
[2] |
A. Baider and R. C. Churchill, Unique normal forms for planar vector fields, Math. Z., 199 (1988), 303-310.doi: 10.1007/BF01159780. |
[3] |
A. Baider and J. A. Sanders, Unique normal forms: The nilpotent Hamiltonian case, J. Differential Equations, 92 (1991), 282-304.doi: 10.1016/0022-0396(91)90050-J. |
[4] |
A. Baider and J. A. Sanders, Further reductions of the Takens-Bogdanov normal form, J. Differential Equations, 99 (1992), 205-244.doi: 10.1016/0022-0396(92)90022-F. |
[5] |
G. Chen and J. D. Dora, Further reductions of normal forms for dynamical systems, J. Differential Equations, 166 (2000), 79-106.doi: 10.1006/jdeq.2000.3783. |
[6] |
G. Chen, D. Wang and X. Wang, Unique normal forms for nilpotent planar vector fields, Internat. J. Bifur. Chaos, 12 (2002), 2159-2174.doi: 10.1142/S0218127402005741. |
[7] |
M. Gazor and F. Mokhtari, Normal forms of Hopf-Zero singularity, preprint, arXiv:1210.4467v4. |
[8] |
M. Gazor and F. Mokhtari, Volume-preserving normal forms of Hopf-Zero singularity, Nonlinearity, 26 (2013), 2809-2832.doi: 10.1088/0951-7715/26/10/2809. |
[9] |
M. Gazor, F. Mokhtari and J. A. Sanders, Normal forms for Hopf-Zero singularities with nonconservative nonlinear part, J. Differential Equations, 254 (2013), 1571-1581.doi: 10.1016/j.jde.2012.11.004. |
[10] |
M. Gazor and P. Yu, Spectral sequences and parametric normal forms, J. Differential Equations, 252 (2012), 1003-1031.doi: 10.1016/j.jde.2011.09.043. |
[11] |
M. Gazor and P. Yu, Formal decomposition method and parametric normal forms, Internat. J. Bifur. Chaos, 20 (2010), 3487-3515.doi: 10.1142/S0218127410027830. |
[12] |
M. Gazor and P. Yu, Infinite order parametric normal form of Hopf singularity, Internat. J. Bifur. Chaos, 18 (2008), 3393-3408.doi: 10.1142/S0218127408022445. |
[13] |
H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations, 132 (1996), 293-318.doi: 10.1006/jdeq.1996.0181. |
[14] |
M. Moazeni, Asymptotic Unfoldings and Normal Forms of the Generalized Saddle-Node case of Bogdanov-Takens Singularity, Master Thesis (in persian), Isfahan University of Technology, Isfahan, Iran, 2011. |
[15] |
J. Murdock, Asymptotic unfoldings of dynamical systems by normalizing beyond the normal form, J. Differential Equations, 143 (1998), 151-190.doi: 10.1006/jdeq.1997.3368. |
[16] |
J. Murdock, Normal Forms and Unfoldings for Local Dynamical Systems, Springer, New York, 2003.doi: 10.1007/b97515. |
[17] |
J. Murdock, Hypernormal form theory: Foundations and algorithms, J. Differential Equations, 205 (2004), 424-465.doi: 10.1016/j.jde.2004.02.015. |
[18] |
J. Murdock and D. Malonza, An improved theory of asymtotic unfoldings, J. Differential Equations, 247 (2009), 685-709.doi: 10.1016/j.jde.2009.04.014. |
[19] |
J. Peng and D. Wang, A suffiecient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf singularities, Internat. J. Bifur. Chaos, 14 (2004), 3337-3345.doi: 10.1142/S0218127404011247. |
[20] |
E. Stróżyna, The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node, Bull. Sci. Math., 126 (2002), 555-579.doi: 10.1016/S0007-4497(02)01127-2. |
[21] |
E. Stróżyna and H. Żoladek, The complete formal normal form for the Bogdanov-Takens singularity, preprint, (2013), private communication. |
[22] |
E. Stróżyna and H. Żoladek, Divergence of the reduction to the multidimensional nilpotent Takens normal form, Nonlinearity, 24 (2011), 3129-3141.doi: 10.1088/0951-7715/24/11/007. |
[23] |
E. Stróżyna and H. Żoladek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, 179 (2002), 479-537.doi: 10.1006/jdeq.2001.4043. |
[24] |
E. Stróżyna and H. Żoladek, Orbital formal normal forms for general Bogdanov-Takens singularity, J. Differential Equations, 193 (2003), 239-259.doi: 10.1016/S0022-0396(03)00137-2. |
[25] |
D. Wang, J. Li, M. Huang and Y. Jiang, Unique normal form of Bogdanos-Takens singularities, J. Differential Equations, 163 (2000), 223-238.doi: 10.1006/jdeq.1999.3739. |
[26] |
J. Li, L. Zhang and D. Wang, Unique normal form of a class of 3 dimensional vector fields with symmetries, J. Differential Equations, 257 (2014), 2341-2359.doi: 10.1016/j.jde.2014.05.039. |
[27] |
P. Yu, Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling, J. Comp. and App. Math., 144 (2002), 359-373.doi: 10.1016/S0377-0427(01)00573-8. |
[28] |
P. Yu and Y. Yuan, A matching pursuit technique for computing the simplest normal forms of vector fields, J. Symbolic Computation, 35 (2003), 591-615.doi: 10.1016/S0747-7171(03)00021-X. |
[29] |
Y. Yuan and P. Yu, Computation of simplest normal forms of differential equations associated with a double-zero eigenvalues, Internat. J. Bifur. Chaos, 11 (2001), 1307-1330.doi: 10.1142/S0218127401002742. |
[30] |
P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity, 16 (2003), 277-300.doi: 10.1088/0951-7715/16/1/317. |