-
Previous Article
Wolff type potential estimates and application to nonlinear equations with negative exponents
- DCDS Home
- This Issue
-
Next Article
Blow-up for the two-component Camassa--Holm system
Short-wavelength instabilities of edge waves in stratified water
1. | Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 6, P.O. Box 1-764, RO-014700 Bucharest, Romania |
References:
[1] |
B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in Nonlinear Wave Interactions in Fluids, edited by R. W. Miksad et al., ASME, New York, (1987), 71-77. |
[2] |
A. Constantin, On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[3] |
A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.
doi: 10.1088/0305-4470/34/45/311. |
[4] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[5] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics, Vol. 81, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611971873. |
[6] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res., 117 (2012), C05029.
doi: 10.1029/2012JC007879. |
[7] |
A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.-Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219. |
[8] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[9] |
M.-L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides heterogenes, Atti Accad. Naz. Lincei, 15 (1932), 814-819. |
[10] |
U. Ehrenmark, Oblique wave incidence on a plane beach: The classical problem revisited, J. Fluid Mech., 368 (1998), 291-319.
doi: 10.1017/S0022112098001888. |
[11] |
S. Friedlander and A. Lipton-Lifschitz, Localized instabilities in fluids, in Handbook of Mathematical Fluid Dynamics, (eds. S. Friedlander and D. Serre), North-Holland, 2 (2003), 289-354.
doi: 10.1016/S1874-5792(03)80010-1. |
[12] |
S. Friedlander and M. M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66 (1991), 2204-2206.
doi: 10.1103/PhysRevLett.66.2204. |
[13] |
S. Friedlander and M. M. Vishik, Instability criteria for steady flows of a perfect fluid, Chaos, 2 (1992), 455-460.
doi: 10.1063/1.165888. |
[14] |
S. Friedlander and V. Yudovich, Instabilities in fluid motion, Not. Am. Math. Soc., 46 (1999), 1358-1367. |
[15] |
F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667.
doi: 10.1007/s00021-014-0175-4. |
[16] |
F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445. |
[17] |
D. Henry, The trajectories of particles in deep-water Stokes waves, Int. Math. Res. Not., (2006), Art. ID 23405, 13 pp.
doi: 10.1155/IMRN/2006/23405. |
[18] |
D. Henry, On Gerstner's water wave, J. Nonlinear Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.S2.7. |
[19] |
D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001. |
[20] |
D. Henry and O. Mustafa, Existence of solutions for a class of edge wave equations, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1113-1119.
doi: 10.3934/dcdsb.2006.6.1113. |
[21] |
P.A. Howd, A.J. Bowen and R.A. Holman, Edge waves in the presence of strong longshore currents, J. Geophys. Res., 97 (1992), 11357-11371.
doi: 10.1029/92JC00858. |
[22] |
D. Ionescu-Kruse, Instability of edge waves along a sloping beach, J. Diff. Eqs., 256 (2014), 3999-4012.
doi: 10.1016/j.jde.2014.03.009. |
[23] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Univeristy Press, 1997.
doi: 10.1017/CBO9780511624056. |
[24] |
R. S. Johnson, Edge waves: Theories past and present, Phil. Trans. R. Soc. A, 365 (2007), 2359-2376.
doi: 10.1098/rsta.2007.2013. |
[25] |
D. D. Joseph, Stability of Fluid Motions I, Springer Verlag, New York, 1976. |
[26] |
S. Leblanc, Local stability of Gerstner's waves, J. Fluid Mech., 506 (2004), 245-254.
doi: 10.1017/S0022112004008444. |
[27] |
N. R. Lebovitz and A. Lifschitz, Short-wavelength instabilities of Riemann ellipsoids, Phil. Trans. R. Soc. Lond. A, 354 (1996), 927-950.
doi: 10.1098/rsta.1996.0037. |
[28] |
A. Lifschitz, Short wavelength instabilities of incompressible three-dimensional flows and generation of vorticity, Phys. Lett. A, 157 (1991), 481-487.
doi: 10.1016/0375-9601(91)91023-7. |
[29] |
A. Lifschitz, On the instability of certain motions of an ideal incompressible fluid, Advances Appl. Math., 15 (1994), 404-436.
doi: 10.1006/aama.1994.1017. |
[30] |
A. Lifschitz and E. Hameiri, Local stability conditions in fluid dynamics, Phys. Fluids, 3 (1991), 2644-2651.
doi: 10.1063/1.858153. |
[31] |
A.-V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A: Math. Theor., 45 (2012), 365501, 10 pp.
doi: 10.1088/1751-8113/45/36/365501. |
[32] |
E. Mollo-Christensen, Allowable discontinuities in a Gerstner wave, Phys. Fluids, 25 (1982), 586-587.
doi: 10.1063/1.863802. |
[33] |
R. Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math. Phys., 18 (2011), 127-137.
doi: 10.1142/S1402925111001210. |
[34] |
G. B. Whitham, Lecture on Wave Propagation, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 61. Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1979. |
[35] |
C. S. Yih, Note on edge waves in a stratified fluid, J. Fluid Mech., 24 (1966), 765-767.
doi: 10.1017/S0022112066000983. |
[36] |
C. S. Yih, Stratified flows, Ann. Rev. Fluid Mech., 1 (1969), 73-110.
doi: 10.1146/annurev.fl.01.010169.000445. |
show all references
References:
[1] |
B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in Nonlinear Wave Interactions in Fluids, edited by R. W. Miksad et al., ASME, New York, (1987), 71-77. |
[2] |
A. Constantin, On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[3] |
A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.
doi: 10.1088/0305-4470/34/45/311. |
[4] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[5] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics, Vol. 81, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611971873. |
[6] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res., 117 (2012), C05029.
doi: 10.1029/2012JC007879. |
[7] |
A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.-Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219. |
[8] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[9] |
M.-L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides heterogenes, Atti Accad. Naz. Lincei, 15 (1932), 814-819. |
[10] |
U. Ehrenmark, Oblique wave incidence on a plane beach: The classical problem revisited, J. Fluid Mech., 368 (1998), 291-319.
doi: 10.1017/S0022112098001888. |
[11] |
S. Friedlander and A. Lipton-Lifschitz, Localized instabilities in fluids, in Handbook of Mathematical Fluid Dynamics, (eds. S. Friedlander and D. Serre), North-Holland, 2 (2003), 289-354.
doi: 10.1016/S1874-5792(03)80010-1. |
[12] |
S. Friedlander and M. M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66 (1991), 2204-2206.
doi: 10.1103/PhysRevLett.66.2204. |
[13] |
S. Friedlander and M. M. Vishik, Instability criteria for steady flows of a perfect fluid, Chaos, 2 (1992), 455-460.
doi: 10.1063/1.165888. |
[14] |
S. Friedlander and V. Yudovich, Instabilities in fluid motion, Not. Am. Math. Soc., 46 (1999), 1358-1367. |
[15] |
F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667.
doi: 10.1007/s00021-014-0175-4. |
[16] |
F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445. |
[17] |
D. Henry, The trajectories of particles in deep-water Stokes waves, Int. Math. Res. Not., (2006), Art. ID 23405, 13 pp.
doi: 10.1155/IMRN/2006/23405. |
[18] |
D. Henry, On Gerstner's water wave, J. Nonlinear Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.S2.7. |
[19] |
D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001. |
[20] |
D. Henry and O. Mustafa, Existence of solutions for a class of edge wave equations, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1113-1119.
doi: 10.3934/dcdsb.2006.6.1113. |
[21] |
P.A. Howd, A.J. Bowen and R.A. Holman, Edge waves in the presence of strong longshore currents, J. Geophys. Res., 97 (1992), 11357-11371.
doi: 10.1029/92JC00858. |
[22] |
D. Ionescu-Kruse, Instability of edge waves along a sloping beach, J. Diff. Eqs., 256 (2014), 3999-4012.
doi: 10.1016/j.jde.2014.03.009. |
[23] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Univeristy Press, 1997.
doi: 10.1017/CBO9780511624056. |
[24] |
R. S. Johnson, Edge waves: Theories past and present, Phil. Trans. R. Soc. A, 365 (2007), 2359-2376.
doi: 10.1098/rsta.2007.2013. |
[25] |
D. D. Joseph, Stability of Fluid Motions I, Springer Verlag, New York, 1976. |
[26] |
S. Leblanc, Local stability of Gerstner's waves, J. Fluid Mech., 506 (2004), 245-254.
doi: 10.1017/S0022112004008444. |
[27] |
N. R. Lebovitz and A. Lifschitz, Short-wavelength instabilities of Riemann ellipsoids, Phil. Trans. R. Soc. Lond. A, 354 (1996), 927-950.
doi: 10.1098/rsta.1996.0037. |
[28] |
A. Lifschitz, Short wavelength instabilities of incompressible three-dimensional flows and generation of vorticity, Phys. Lett. A, 157 (1991), 481-487.
doi: 10.1016/0375-9601(91)91023-7. |
[29] |
A. Lifschitz, On the instability of certain motions of an ideal incompressible fluid, Advances Appl. Math., 15 (1994), 404-436.
doi: 10.1006/aama.1994.1017. |
[30] |
A. Lifschitz and E. Hameiri, Local stability conditions in fluid dynamics, Phys. Fluids, 3 (1991), 2644-2651.
doi: 10.1063/1.858153. |
[31] |
A.-V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A: Math. Theor., 45 (2012), 365501, 10 pp.
doi: 10.1088/1751-8113/45/36/365501. |
[32] |
E. Mollo-Christensen, Allowable discontinuities in a Gerstner wave, Phys. Fluids, 25 (1982), 586-587.
doi: 10.1063/1.863802. |
[33] |
R. Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math. Phys., 18 (2011), 127-137.
doi: 10.1142/S1402925111001210. |
[34] |
G. B. Whitham, Lecture on Wave Propagation, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 61. Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1979. |
[35] |
C. S. Yih, Note on edge waves in a stratified fluid, J. Fluid Mech., 24 (1966), 765-767.
doi: 10.1017/S0022112066000983. |
[36] |
C. S. Yih, Stratified flows, Ann. Rev. Fluid Mech., 1 (1969), 73-110.
doi: 10.1146/annurev.fl.01.010169.000445. |
[1] |
Fahe Miao, Michal Fečkan, Jinrong Wang. Exact solution and instability for geophysical edge waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2447-2461. doi: 10.3934/cpaa.2022067 |
[2] |
Chia-Chun Hsu, Hsun-Jung Cho, Shu-Cherng Fang. Solving routing and wavelength assignment problem with maximum edge-disjoint paths. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1065-1084. doi: 10.3934/jimo.2016062 |
[3] |
Sergio Grillo, Leandro Salomone, Marcela Zuccalli. Explicit solutions of the kinetic and potential matching conditions of the energy shaping method. Journal of Geometric Mechanics, 2021, 13 (4) : 629-646. doi: 10.3934/jgm.2021022 |
[4] |
Orlando Lopes. A linearized instability result for solitary waves. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115 |
[5] |
M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121 |
[6] |
Guy Bouchitté, Ben Schweizer. Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks and Heterogeneous Media, 2013, 8 (4) : 857-878. doi: 10.3934/nhm.2013.8.857 |
[7] |
Sergey V. Dmitriev, Asiya A. Nazarova, Anatoliy I. Pshenichnyuk, Albert M. Iskandarov. Dynamics of edge dislocation clusters interacting with running acoustic waves. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1079-1094. doi: 10.3934/dcdss.2011.4.1079 |
[8] |
Wouter Rogiest, Dieter Fiems, Koenraad Laevens, Herwig Bruneel. Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times. Journal of Industrial and Management Optimization, 2010, 6 (3) : 569-585. doi: 10.3934/jimo.2010.6.569 |
[9] |
Jifeng Chu, Delia Ionescu-Kruse, Yanjuan Yang. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4399-4414. doi: 10.3934/dcds.2019178 |
[10] |
David Henry, Hung-Chu Hsu. Instability of equatorial water waves in the $f-$plane. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 909-916. doi: 10.3934/dcds.2015.35.909 |
[11] |
David Henry, Octavian G. Mustafa. Existence of solutions for a class of edge wave equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1113-1119. doi: 10.3934/dcdsb.2006.6.1113 |
[12] |
Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069 |
[13] |
Guido Schneider, Matthias Winter. The amplitude system for a Simultaneous short-wave Turing and long-wave Hopf instability. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021119 |
[14] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the generalized short pulse equation. Evolution Equations and Control Theory, 2019, 8 (4) : 737-753. doi: 10.3934/eect.2019036 |
[15] |
Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051 |
[16] |
Pooja Girotra, Jyoti Ahuja, Dinesh Verma. Analysis of Rayleigh Taylor instability in nanofluids with rotation. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021018 |
[17] |
Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756 |
[18] |
Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255 |
[19] |
Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147 |
[20] |
Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]