May  2015, 35(5): 2067-2078. doi: 10.3934/dcds.2015.35.2067

Wolff type potential estimates and application to nonlinear equations with negative exponents

1. 

Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023

Received  December 2013 Revised  September 2014 Published  December 2014

In this paper, we are concerned with the positive continuous entire solutions of the Wolff type integral equation $$ u(x)=c(x)W_{\beta,\gamma}(u^{-p})(x), \quad u>0 ~in~ R^n, $$ where $n \geq 1$, $p>0$, $\gamma>1$, $\beta>0$ and $\beta\gamma \neq n$. In addition, $c(x)$ is a double bounded function. Such an integral equation is related to the study of the conformal geometry and nonlinear PDEs, such as $\gamma$-Laplace equations and $k$-Hessian equations with negative exponents. By some Wolff type potential integral estimates, we obtain the asymptotic rates and the integrability of positive solutions, and discuss the existence and nonexistence results of the radial solutions.
Citation: Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067
References:
[1]

C. Caseante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Anal., 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[2]

H. Chen and Z. Lü, The properties of positive solutions to an integral system involving Wolff potential,, Discrete Contin. Dyn. Syst., 34 (2014), 1879.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[6]

Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216.  doi: 10.1016/j.jde.2008.06.027.  Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents,, Discrete Contin. Dyn. Syst., 34 (2014), 2561.  doi: 10.3934/dcds.2014.34.2561.  Google Scholar

[9]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161.  doi: 10.5802/aif.944.  Google Scholar

[10]

T. Kilpelaiinen, T. Kuusi and A. Tuhola-Kujanpaa, Superharmonic functions are locally renormalized solutions,, Ann. Inst. H. Poincare Analyse Non Lineaire, 28 (2011), 775.  doi: 10.1016/j.anihpc.2011.03.004.  Google Scholar

[11]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Seuola Norm. Sup. Pisa, 19 (1992), 591.   Google Scholar

[12]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

N. Kawano, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to div$(|Du|^{m-2} Du)+K(|x|)u^q=0$ in $R^n$,, J. Math. Soc. Japan, 45 (1993), 719.  doi: 10.2969/jmsj/04540719.  Google Scholar

[14]

D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.  doi: 10.1007/s11118-010-9218-5.  Google Scholar

[16]

Y. Lei, On the integral systems with negative exponents,, Discrete Contin. Dyn. Syst., 35 (2015), 1039.  doi: 10.3934/dcds.2015.35.1039.  Google Scholar

[17]

Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.  doi: 10.1016/j.jde.2011.10.009.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[19]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[20]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[21]

T. Lukkari, F.-Y. Maeda and N. Marola, Wolff potential estimates for elliptic equations with nonstandard growth and applications,, Forum. Math., 22 (2010), 1061.  doi: 10.1515/forum.2010.057.  Google Scholar

[22]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Adv. Math., 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[23]

J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[24]

G. Mingione, Gradient potential estimates,, J. Eur. Math. Soc., 13 (2011), 459.  doi: 10.4171/JEMS/258.  Google Scholar

[25]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[26]

S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, J. Funct. Anal., 263 (2012), 3857.  doi: 10.1016/j.jfa.2012.09.012.  Google Scholar

[27]

X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$,, Adv. Math., 194 (2005), 485.  doi: 10.1016/j.aim.2004.07.004.  Google Scholar

[28]

X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95.  doi: 10.1016/j.jfa.2007.03.005.  Google Scholar

[29]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. Partial Differential Equations, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

show all references

References:
[1]

C. Caseante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Anal., 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[2]

H. Chen and Z. Lü, The properties of positive solutions to an integral system involving Wolff potential,, Discrete Contin. Dyn. Syst., 34 (2014), 1879.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[6]

Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216.  doi: 10.1016/j.jde.2008.06.027.  Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents,, Discrete Contin. Dyn. Syst., 34 (2014), 2561.  doi: 10.3934/dcds.2014.34.2561.  Google Scholar

[9]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161.  doi: 10.5802/aif.944.  Google Scholar

[10]

T. Kilpelaiinen, T. Kuusi and A. Tuhola-Kujanpaa, Superharmonic functions are locally renormalized solutions,, Ann. Inst. H. Poincare Analyse Non Lineaire, 28 (2011), 775.  doi: 10.1016/j.anihpc.2011.03.004.  Google Scholar

[11]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Seuola Norm. Sup. Pisa, 19 (1992), 591.   Google Scholar

[12]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

N. Kawano, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to div$(|Du|^{m-2} Du)+K(|x|)u^q=0$ in $R^n$,, J. Math. Soc. Japan, 45 (1993), 719.  doi: 10.2969/jmsj/04540719.  Google Scholar

[14]

D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.  doi: 10.1007/s11118-010-9218-5.  Google Scholar

[16]

Y. Lei, On the integral systems with negative exponents,, Discrete Contin. Dyn. Syst., 35 (2015), 1039.  doi: 10.3934/dcds.2015.35.1039.  Google Scholar

[17]

Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.  doi: 10.1016/j.jde.2011.10.009.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[19]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[20]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[21]

T. Lukkari, F.-Y. Maeda and N. Marola, Wolff potential estimates for elliptic equations with nonstandard growth and applications,, Forum. Math., 22 (2010), 1061.  doi: 10.1515/forum.2010.057.  Google Scholar

[22]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Adv. Math., 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[23]

J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[24]

G. Mingione, Gradient potential estimates,, J. Eur. Math. Soc., 13 (2011), 459.  doi: 10.4171/JEMS/258.  Google Scholar

[25]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[26]

S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, J. Funct. Anal., 263 (2012), 3857.  doi: 10.1016/j.jfa.2012.09.012.  Google Scholar

[27]

X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$,, Adv. Math., 194 (2005), 485.  doi: 10.1016/j.aim.2004.07.004.  Google Scholar

[28]

X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95.  doi: 10.1016/j.jfa.2007.03.005.  Google Scholar

[29]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. Partial Differential Equations, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[1]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[4]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[5]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[6]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[7]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[12]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[15]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[16]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[17]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[18]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[19]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[20]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]