May  2015, 35(5): 2079-2098. doi: 10.3934/dcds.2015.35.2079

Projection methods and discrete gradient methods for preserving first integrals of ODEs

1. 

Department of Physics, University of Otago, PO Box 56, Dunedin 9054

2. 

Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia

3. 

Department of Mathematics, Washington University in St. Louis, Campus Box 1146, One Brookings Drive, St. Louis, Missouri 63130-4899

4. 

Department of Mathematics, University of Bergen, P.O. Box 7800, N-5020 Bergen

Received  May 2014 Revised  September 2014 Published  December 2014

In this paper we study linear projection methods for approximating the solution and simultaneously preserving first integrals of autonomous ordinary differential equations. We show that each (linear) projection method is equivalent to a class of discrete gradient methods, in both single and multiple first integral cases, and known results for discrete gradient methods also apply to projection methods. Thus we prove that in the single first integral case, under certain mild conditions, the numerical solution for a projection method exists and is locally unique, and preserves the order of accuracy of the underlying method. Our results allow considerable freedom for the choice of projection direction and do not have a time step restriction close to critical points.
Citation: Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079
References:
[1]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations,, $2^{nd}$ edition, (2008).  doi: 10.1002/9780470753767.  Google Scholar

[2]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients,, J. Phys. A, 44 (2011).  doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[3]

R. W. R. Darling, Differential Forms and Connections,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511805110.  Google Scholar

[4]

W. Gautschi, Numerical Analysis. An Introduction,, Birkhäuser, (1997).   Google Scholar

[5]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Science, 6 (1996), 449.  doi: 10.1007/BF02440162.  Google Scholar

[6]

V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions,, BIT, 45 (2005), 709.  doi: 10.1007/s10543-005-0034-z.  Google Scholar

[7]

W. Greub, Multilinear Algebra,, $2^{nd}$ edition, (1978).   Google Scholar

[8]

E. Hairer, Symmetric projection methods for differential equations on manifolds,, BIT, 40 (2000), 726.  doi: 10.1023/A:1022344502818.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, 31 (2006).   Google Scholar

[10]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems,, Springer Series in Computational Mathematics, 8 (1993).   Google Scholar

[11]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients,, J. Comput. Phys., 76 (1988), 85.  doi: 10.1016/0021-9991(88)90132-5.  Google Scholar

[12]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[13]

C. Meyer, Matrix Analysis and Applied Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (2000).  doi: 10.1137/1.9780898719512.  Google Scholar

[14]

R. A. Norton and G. R. W. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation,, Discret. Contin. Dyn. S., 34 (2014), 1147.  doi: 10.3934/dcds.2014.34.1147.  Google Scholar

[15]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658.  doi: 10.2307/2313800.  Google Scholar

[16]

M. Papi, On the domain of the implicit function and applications,, J. Inequal. Appl., 2005 (2005), 221.  doi: 10.1155/JIA.2005.221.  Google Scholar

[17]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral,, Physics Letters. A, 218 (1996), 223.  doi: 10.1016/0375-9601(96)00403-3.  Google Scholar

[18]

G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume, or first integrals,, in Proceedings of the 15th IMACS World Congress (ed. A. Sydow), 2 (1997), 601.   Google Scholar

[19]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[20]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral,, J. Phys. A, 29 (1996).  doi: 10.1088/0305-4470/29/13/006.  Google Scholar

[21]

J. C. Simo, N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics,, Comput. Methods Appl. Mech. Engrg., 100 (1992), 63.  doi: 10.1016/0045-7825(92)90115-Z.  Google Scholar

[22]

L. N. Trefethen and D. Bau III, Numerical Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (1997).  doi: 10.1137/1.9780898719574.  Google Scholar

[23]

G. Zhong and J. E. Marsden, Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators,, Physics Letters A, 133 (1988), 134.  doi: 10.1016/0375-9601(88)90773-6.  Google Scholar

show all references

References:
[1]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations,, $2^{nd}$ edition, (2008).  doi: 10.1002/9780470753767.  Google Scholar

[2]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients,, J. Phys. A, 44 (2011).  doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[3]

R. W. R. Darling, Differential Forms and Connections,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511805110.  Google Scholar

[4]

W. Gautschi, Numerical Analysis. An Introduction,, Birkhäuser, (1997).   Google Scholar

[5]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Science, 6 (1996), 449.  doi: 10.1007/BF02440162.  Google Scholar

[6]

V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions,, BIT, 45 (2005), 709.  doi: 10.1007/s10543-005-0034-z.  Google Scholar

[7]

W. Greub, Multilinear Algebra,, $2^{nd}$ edition, (1978).   Google Scholar

[8]

E. Hairer, Symmetric projection methods for differential equations on manifolds,, BIT, 40 (2000), 726.  doi: 10.1023/A:1022344502818.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, 31 (2006).   Google Scholar

[10]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems,, Springer Series in Computational Mathematics, 8 (1993).   Google Scholar

[11]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients,, J. Comput. Phys., 76 (1988), 85.  doi: 10.1016/0021-9991(88)90132-5.  Google Scholar

[12]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[13]

C. Meyer, Matrix Analysis and Applied Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (2000).  doi: 10.1137/1.9780898719512.  Google Scholar

[14]

R. A. Norton and G. R. W. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation,, Discret. Contin. Dyn. S., 34 (2014), 1147.  doi: 10.3934/dcds.2014.34.1147.  Google Scholar

[15]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658.  doi: 10.2307/2313800.  Google Scholar

[16]

M. Papi, On the domain of the implicit function and applications,, J. Inequal. Appl., 2005 (2005), 221.  doi: 10.1155/JIA.2005.221.  Google Scholar

[17]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral,, Physics Letters. A, 218 (1996), 223.  doi: 10.1016/0375-9601(96)00403-3.  Google Scholar

[18]

G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume, or first integrals,, in Proceedings of the 15th IMACS World Congress (ed. A. Sydow), 2 (1997), 601.   Google Scholar

[19]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[20]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral,, J. Phys. A, 29 (1996).  doi: 10.1088/0305-4470/29/13/006.  Google Scholar

[21]

J. C. Simo, N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics,, Comput. Methods Appl. Mech. Engrg., 100 (1992), 63.  doi: 10.1016/0045-7825(92)90115-Z.  Google Scholar

[22]

L. N. Trefethen and D. Bau III, Numerical Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (1997).  doi: 10.1137/1.9780898719574.  Google Scholar

[23]

G. Zhong and J. E. Marsden, Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators,, Physics Letters A, 133 (1988), 134.  doi: 10.1016/0375-9601(88)90773-6.  Google Scholar

[1]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[2]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[3]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[6]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[7]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[8]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[9]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[10]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[11]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[12]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[13]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[14]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[15]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[16]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[17]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[18]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[19]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[20]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (6)

[Back to Top]