May  2015, 35(5): 2099-2122. doi: 10.3934/dcds.2015.35.2099

Unbounded regime for circle maps with a flat interval

1. 

Institute of Mathematics of PAN, ul. Śniadeckich 8, 00-956 Warszawa, Poland

Received  May 2014 Revised  October 2014 Published  December 2014

We study $\mathcal{C}^2$ weakly order preserving circle maps with a flat interval. In particular we are interested in the geometry of the mapping near to the singularities at the boundary of the flat interval. Without any assumption on the rotation number we show that the geometry is degenerate when the degree of the singularities is less than or equal to two and becomes bounded when the degree goes to three. As an example of application, the result is applied to study Cherry flows.
Citation: Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099
References:
[1]

S. K. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, vol. 153 of Translations of Mathematical Monographs,, American Mathematical Society, (1996).   Google Scholar

[2]

T. M. Cherry, Analytic Quasi-Periodic Curves of Discontinuous Type on a Torus,, Proc. London Math. Soc., S2-44 (1938), 2.  doi: 10.1112/plms/s2-44.3.175.  Google Scholar

[3]

W. de Melo and S. van Strien, One-dimensional Dynamics, vol. 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3),, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-78043-1.  Google Scholar

[4]

J. Graczyk, L. B. Jonker, G. Świątek, F. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval,, Comm. Math. Phys., 173 (1995), 599.  doi: 10.1007/BF02101658.  Google Scholar

[5]

J. Graczyk, Dynamics of circle maps with flat spots,, Fund. Math., 209 (2010), 267.  doi: 10.4064/fm209-3-4.  Google Scholar

[6]

J. Graczyk, D. Sands and G. Świątek, Metric attractors for smooth unimodal maps,, Ann. of Math. (2), 159 (2004), 725.  doi: 10.4007/annals.2004.159.725.  Google Scholar

[7]

M. Martens, S. van Strien, W. de Melo and P. Mendes, On Cherry flows,, Ergodic Theory Dynam. Systems, 10 (1990), 531.  doi: 10.1017/S0143385700005733.  Google Scholar

[8]

P. Mendes, A metric property of Cherry vector fields on the torus,, J. Differential Equations, 89 (1991), 305.  doi: 10.1016/0022-0396(91)90123-Q.  Google Scholar

[9]

P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows,, J. Differential Equations, 97 (1992), 16.  doi: 10.1016/0022-0396(92)90081-W.  Google Scholar

[10]

L. Palmisano, On physical measures for cherry flows,, Preprint., ().   Google Scholar

[11]

L. Palmisano, Sur les Applications du Cercle Avec un Intervalle Plat et Flots de Cherry,, PhD thesis, (2013).   Google Scholar

[12]

L. Palmisano, A phase transition for circle maps and cherry flows,, Comm. Math. Phys., 321 (2013), 135.  doi: 10.1007/s00220-013-1685-2.  Google Scholar

[13]

R. Saghin and E. Vargas, Invariant measures for Cherry flows,, Comm. Math. Phys., 317 (2013), 55.  doi: 10.1007/s00220-012-1611-z.  Google Scholar

[14]

G. Świątek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109.  doi: 10.1007/BF01218263.  Google Scholar

[15]

F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. II,, Comm. Math. Phys., 141 (1991), 279.  doi: 10.1007/BF02101506.  Google Scholar

[16]

S. van Strien, Hyperbolicity and invariant measures for general $C^2$ interval maps satisfying the Misiurewicz condition,, Comm. Math. Phys., 128 (1990), 437.  doi: 10.1007/BF02096868.  Google Scholar

[17]

J. J. P. Veerman, Irrational rotation numbers,, Nonlinearity, 2 (1989), 419.  doi: 10.1088/0951-7715/2/3/003.  Google Scholar

[18]

J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. I,, Comm. Math. Phys., 134 (1990), 89.  doi: 10.1007/BF02102091.  Google Scholar

show all references

References:
[1]

S. K. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, vol. 153 of Translations of Mathematical Monographs,, American Mathematical Society, (1996).   Google Scholar

[2]

T. M. Cherry, Analytic Quasi-Periodic Curves of Discontinuous Type on a Torus,, Proc. London Math. Soc., S2-44 (1938), 2.  doi: 10.1112/plms/s2-44.3.175.  Google Scholar

[3]

W. de Melo and S. van Strien, One-dimensional Dynamics, vol. 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3),, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-78043-1.  Google Scholar

[4]

J. Graczyk, L. B. Jonker, G. Świątek, F. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval,, Comm. Math. Phys., 173 (1995), 599.  doi: 10.1007/BF02101658.  Google Scholar

[5]

J. Graczyk, Dynamics of circle maps with flat spots,, Fund. Math., 209 (2010), 267.  doi: 10.4064/fm209-3-4.  Google Scholar

[6]

J. Graczyk, D. Sands and G. Świątek, Metric attractors for smooth unimodal maps,, Ann. of Math. (2), 159 (2004), 725.  doi: 10.4007/annals.2004.159.725.  Google Scholar

[7]

M. Martens, S. van Strien, W. de Melo and P. Mendes, On Cherry flows,, Ergodic Theory Dynam. Systems, 10 (1990), 531.  doi: 10.1017/S0143385700005733.  Google Scholar

[8]

P. Mendes, A metric property of Cherry vector fields on the torus,, J. Differential Equations, 89 (1991), 305.  doi: 10.1016/0022-0396(91)90123-Q.  Google Scholar

[9]

P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows,, J. Differential Equations, 97 (1992), 16.  doi: 10.1016/0022-0396(92)90081-W.  Google Scholar

[10]

L. Palmisano, On physical measures for cherry flows,, Preprint., ().   Google Scholar

[11]

L. Palmisano, Sur les Applications du Cercle Avec un Intervalle Plat et Flots de Cherry,, PhD thesis, (2013).   Google Scholar

[12]

L. Palmisano, A phase transition for circle maps and cherry flows,, Comm. Math. Phys., 321 (2013), 135.  doi: 10.1007/s00220-013-1685-2.  Google Scholar

[13]

R. Saghin and E. Vargas, Invariant measures for Cherry flows,, Comm. Math. Phys., 317 (2013), 55.  doi: 10.1007/s00220-012-1611-z.  Google Scholar

[14]

G. Świątek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109.  doi: 10.1007/BF01218263.  Google Scholar

[15]

F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. II,, Comm. Math. Phys., 141 (1991), 279.  doi: 10.1007/BF02101506.  Google Scholar

[16]

S. van Strien, Hyperbolicity and invariant measures for general $C^2$ interval maps satisfying the Misiurewicz condition,, Comm. Math. Phys., 128 (1990), 437.  doi: 10.1007/BF02096868.  Google Scholar

[17]

J. J. P. Veerman, Irrational rotation numbers,, Nonlinearity, 2 (1989), 419.  doi: 10.1088/0951-7715/2/3/003.  Google Scholar

[18]

J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. I,, Comm. Math. Phys., 134 (1990), 89.  doi: 10.1007/BF02102091.  Google Scholar

[1]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[2]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[3]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[4]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[5]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[6]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[7]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[8]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[9]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[11]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[12]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[13]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[14]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[15]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[18]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[19]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[20]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]