-
Previous Article
One-parameter solutions of the Euler-Arnold equation on the contactomorphism group
- DCDS Home
- This Issue
-
Next Article
Projection methods and discrete gradient methods for preserving first integrals of ODEs
Unbounded regime for circle maps with a flat interval
1. | Institute of Mathematics of PAN, ul. Śniadeckich 8, 00-956 Warszawa, Poland |
References:
[1] |
S. K. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, vol. 153 of Translations of Mathematical Monographs,, American Mathematical Society, (1996).
|
[2] |
T. M. Cherry, Analytic Quasi-Periodic Curves of Discontinuous Type on a Torus,, Proc. London Math. Soc., S2-44 (1938), 2.
doi: 10.1112/plms/s2-44.3.175. |
[3] |
W. de Melo and S. van Strien, One-dimensional Dynamics, vol. 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3),, Springer-Verlag, (1993).
doi: 10.1007/978-3-642-78043-1. |
[4] |
J. Graczyk, L. B. Jonker, G. Świątek, F. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval,, Comm. Math. Phys., 173 (1995), 599.
doi: 10.1007/BF02101658. |
[5] |
J. Graczyk, Dynamics of circle maps with flat spots,, Fund. Math., 209 (2010), 267.
doi: 10.4064/fm209-3-4. |
[6] |
J. Graczyk, D. Sands and G. Świątek, Metric attractors for smooth unimodal maps,, Ann. of Math. (2), 159 (2004), 725.
doi: 10.4007/annals.2004.159.725. |
[7] |
M. Martens, S. van Strien, W. de Melo and P. Mendes, On Cherry flows,, Ergodic Theory Dynam. Systems, 10 (1990), 531.
doi: 10.1017/S0143385700005733. |
[8] |
P. Mendes, A metric property of Cherry vector fields on the torus,, J. Differential Equations, 89 (1991), 305.
doi: 10.1016/0022-0396(91)90123-Q. |
[9] |
P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows,, J. Differential Equations, 97 (1992), 16.
doi: 10.1016/0022-0396(92)90081-W. |
[10] |
L. Palmisano, On physical measures for cherry flows,, Preprint., (). Google Scholar |
[11] |
L. Palmisano, Sur les Applications du Cercle Avec un Intervalle Plat et Flots de Cherry,, PhD thesis, (2013). Google Scholar |
[12] |
L. Palmisano, A phase transition for circle maps and cherry flows,, Comm. Math. Phys., 321 (2013), 135.
doi: 10.1007/s00220-013-1685-2. |
[13] |
R. Saghin and E. Vargas, Invariant measures for Cherry flows,, Comm. Math. Phys., 317 (2013), 55.
doi: 10.1007/s00220-012-1611-z. |
[14] |
G. Świątek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109.
doi: 10.1007/BF01218263. |
[15] |
F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. II,, Comm. Math. Phys., 141 (1991), 279.
doi: 10.1007/BF02101506. |
[16] |
S. van Strien, Hyperbolicity and invariant measures for general $C^2$ interval maps satisfying the Misiurewicz condition,, Comm. Math. Phys., 128 (1990), 437.
doi: 10.1007/BF02096868. |
[17] |
J. J. P. Veerman, Irrational rotation numbers,, Nonlinearity, 2 (1989), 419.
doi: 10.1088/0951-7715/2/3/003. |
[18] |
J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. I,, Comm. Math. Phys., 134 (1990), 89.
doi: 10.1007/BF02102091. |
show all references
References:
[1] |
S. K. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, vol. 153 of Translations of Mathematical Monographs,, American Mathematical Society, (1996).
|
[2] |
T. M. Cherry, Analytic Quasi-Periodic Curves of Discontinuous Type on a Torus,, Proc. London Math. Soc., S2-44 (1938), 2.
doi: 10.1112/plms/s2-44.3.175. |
[3] |
W. de Melo and S. van Strien, One-dimensional Dynamics, vol. 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3),, Springer-Verlag, (1993).
doi: 10.1007/978-3-642-78043-1. |
[4] |
J. Graczyk, L. B. Jonker, G. Świątek, F. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval,, Comm. Math. Phys., 173 (1995), 599.
doi: 10.1007/BF02101658. |
[5] |
J. Graczyk, Dynamics of circle maps with flat spots,, Fund. Math., 209 (2010), 267.
doi: 10.4064/fm209-3-4. |
[6] |
J. Graczyk, D. Sands and G. Świątek, Metric attractors for smooth unimodal maps,, Ann. of Math. (2), 159 (2004), 725.
doi: 10.4007/annals.2004.159.725. |
[7] |
M. Martens, S. van Strien, W. de Melo and P. Mendes, On Cherry flows,, Ergodic Theory Dynam. Systems, 10 (1990), 531.
doi: 10.1017/S0143385700005733. |
[8] |
P. Mendes, A metric property of Cherry vector fields on the torus,, J. Differential Equations, 89 (1991), 305.
doi: 10.1016/0022-0396(91)90123-Q. |
[9] |
P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows,, J. Differential Equations, 97 (1992), 16.
doi: 10.1016/0022-0396(92)90081-W. |
[10] |
L. Palmisano, On physical measures for cherry flows,, Preprint., (). Google Scholar |
[11] |
L. Palmisano, Sur les Applications du Cercle Avec un Intervalle Plat et Flots de Cherry,, PhD thesis, (2013). Google Scholar |
[12] |
L. Palmisano, A phase transition for circle maps and cherry flows,, Comm. Math. Phys., 321 (2013), 135.
doi: 10.1007/s00220-013-1685-2. |
[13] |
R. Saghin and E. Vargas, Invariant measures for Cherry flows,, Comm. Math. Phys., 317 (2013), 55.
doi: 10.1007/s00220-012-1611-z. |
[14] |
G. Świątek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109.
doi: 10.1007/BF01218263. |
[15] |
F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. II,, Comm. Math. Phys., 141 (1991), 279.
doi: 10.1007/BF02101506. |
[16] |
S. van Strien, Hyperbolicity and invariant measures for general $C^2$ interval maps satisfying the Misiurewicz condition,, Comm. Math. Phys., 128 (1990), 437.
doi: 10.1007/BF02096868. |
[17] |
J. J. P. Veerman, Irrational rotation numbers,, Nonlinearity, 2 (1989), 419.
doi: 10.1088/0951-7715/2/3/003. |
[18] |
J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. I,, Comm. Math. Phys., 134 (1990), 89.
doi: 10.1007/BF02102091. |
[1] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[2] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[3] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[4] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021005 |
[5] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[6] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[7] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[8] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[9] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[10] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[11] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[12] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[13] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[14] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[15] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[16] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[17] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[18] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[19] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[20] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]