-
Previous Article
Local integration by parts and Pohozaev identities for higher order fractional Laplacians
- DCDS Home
- This Issue
-
Next Article
Unbounded regime for circle maps with a flat interval
One-parameter solutions of the Euler-Arnold equation on the contactomorphism group
1. | Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, United States |
References:
[1] |
V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer, New York 1998. |
[2] |
C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769-790.
doi: 10.1016/0022-247X(72)90019-4. |
[3] |
C. P. Boyer, The Sasakian geometry of the Heisenberg group, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 251-262. |
[4] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, to appear in Comm. Math. Phys. arXiv:1210.7337 (2014). |
[6] |
S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form, J. Fluid Mech., 203 (1989), 1-22.
doi: 10.1017/S0022112089001357. |
[7] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 303-328. |
[8] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[9] |
A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81-83.
doi: 10.3792/pjaa.85.81. |
[10] |
D. G. Ebin and S. C. Preston, Riemannian geometry of the contactomorphism group, submitted, arXiv:1409.2197 (2014). |
[11] |
J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation, Commun. Contemp. Math., 14 (2012), 1250016, 13 pp.
doi: 10.1142/S0219199712500162. |
[12] |
P. Hartman, Ordinary Differential Equations, second edition, SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898719222. |
[13] |
S. O. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.
doi: 10.1063/1.532690. |
[14] |
A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002. |
[15] |
H. P. McKean, Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., 57 (2004), 416-418.
doi: 10.1002/cpa.20003. |
[16] |
G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.
doi: 10.1016/S0393-0440(97)00010-7. |
[17] |
I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168.
doi: 10.1017/S0022112062000130. |
[18] |
A. Sarria, Regularity of stagnation point-form solutions to the two-dimensional Euler equations, to appear in Differential Integral Equations, arXiv:1306.4756 (2014). |
[19] |
R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid, SIAM J. Math. Anal., 40 (2008), 1499-1515.
doi: 10.1137/080713768. |
show all references
References:
[1] |
V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer, New York 1998. |
[2] |
C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769-790.
doi: 10.1016/0022-247X(72)90019-4. |
[3] |
C. P. Boyer, The Sasakian geometry of the Heisenberg group, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 251-262. |
[4] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, to appear in Comm. Math. Phys. arXiv:1210.7337 (2014). |
[6] |
S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form, J. Fluid Mech., 203 (1989), 1-22.
doi: 10.1017/S0022112089001357. |
[7] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 303-328. |
[8] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[9] |
A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81-83.
doi: 10.3792/pjaa.85.81. |
[10] |
D. G. Ebin and S. C. Preston, Riemannian geometry of the contactomorphism group, submitted, arXiv:1409.2197 (2014). |
[11] |
J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation, Commun. Contemp. Math., 14 (2012), 1250016, 13 pp.
doi: 10.1142/S0219199712500162. |
[12] |
P. Hartman, Ordinary Differential Equations, second edition, SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898719222. |
[13] |
S. O. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.
doi: 10.1063/1.532690. |
[14] |
A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002. |
[15] |
H. P. McKean, Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., 57 (2004), 416-418.
doi: 10.1002/cpa.20003. |
[16] |
G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.
doi: 10.1016/S0393-0440(97)00010-7. |
[17] |
I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168.
doi: 10.1017/S0022112062000130. |
[18] |
A. Sarria, Regularity of stagnation point-form solutions to the two-dimensional Euler equations, to appear in Differential Integral Equations, arXiv:1306.4756 (2014). |
[19] |
R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid, SIAM J. Math. Anal., 40 (2008), 1499-1515.
doi: 10.1137/080713768. |
[1] |
Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393 |
[2] |
Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019 |
[3] |
Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323 |
[4] |
Yue Pang, Xingchang Wang, Furong Wu. Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4439-4463. doi: 10.3934/dcdss.2021115 |
[5] |
Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure and Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845 |
[6] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[7] |
Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313 |
[8] |
Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303 |
[9] |
Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047 |
[10] |
Victor Wasiolek. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2007-2021. doi: 10.3934/cpaa.2016025 |
[11] |
Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763 |
[12] |
Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063 |
[13] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[14] |
Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309 |
[15] |
Claude Froeschlé, Massimiliano Guzzo, Elena Lega. First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 687-698. doi: 10.3934/dcdsb.2005.5.687 |
[16] |
Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448 |
[17] |
Perikles G. Papadopoulos, Nikolaos M. Stavrakakis. Global existence for a wave equation on $R^n$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 139-149. doi: 10.3934/dcdss.2008.1.139 |
[18] |
Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070 |
[19] |
Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171 |
[20] |
Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]