May  2015, 35(5): 2123-2130. doi: 10.3934/dcds.2015.35.2123

One-parameter solutions of the Euler-Arnold equation on the contactomorphism group

1. 

Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, United States

Received  May 2014 Revised  August 2014 Published  December 2014

We study solutions of the equation $$ g_t-g_{tyy} + 4g^2 - 4gg_{yy} = y gg_{yyy}-yg_yg_{yy}, \qquad y\in\mathbb{R},$$ which arises by considering solutions of the Euler-Arnold equation on a contactomorphism group when the stream function is of the form $f(t,x,y,z) = zg(t,y)$. The equation is analogous to both the Camassa-Holm equation and the Proudman-Johnson equation. We write the equation as an ODE in a Banach space to establish local existence, and we describe conditions leading to global existence and conditions leading to blowup in finite time.
Citation: Stephen C. Preston, Alejandro Sarria. One-parameter solutions of the Euler-Arnold equation on the contactomorphism group. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2123-2130. doi: 10.3934/dcds.2015.35.2123
References:
[1]

V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics,, Springer, (1998).   Google Scholar

[2]

C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux,, J. Math. Anal. Appl., 40 (1972), 769.  doi: 10.1016/0022-247X(72)90019-4.  Google Scholar

[3]

C. P. Boyer, The Sasakian geometry of the Heisenberg group,, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 251.   Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, to appear in Comm. Math. Phys. , (2014).   Google Scholar

[6]

S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form,, J. Fluid Mech., 203 (1989), 1.  doi: 10.1017/S0022112089001357.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 303.   Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation,, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81.  doi: 10.3792/pjaa.85.81.  Google Scholar

[10]

D. G. Ebin and S. C. Preston, Riemannian geometry of the contactomorphism group,, submitted, (2014).   Google Scholar

[11]

J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation,, Commun. Contemp. Math., 14 (2012).  doi: 10.1142/S0219199712500162.  Google Scholar

[12]

P. Hartman, Ordinary Differential Equations, second edition,, SIAM, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[13]

S. O. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857.  doi: 10.1063/1.532690.  Google Scholar

[14]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).   Google Scholar

[15]

H. P. McKean, Breakdown of the Camassa-Holm equation,, Comm. Pure Appl. Math., 57 (2004), 416.  doi: 10.1002/cpa.20003.  Google Scholar

[16]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[17]

I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point,, J. Fluid Mech., 12 (1962), 161.  doi: 10.1017/S0022112062000130.  Google Scholar

[18]

A. Sarria, Regularity of stagnation point-form solutions to the two-dimensional Euler equations,, to appear in Differential Integral Equations, (2014).   Google Scholar

[19]

R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid,, SIAM J. Math. Anal., 40 (2008), 1499.  doi: 10.1137/080713768.  Google Scholar

show all references

References:
[1]

V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics,, Springer, (1998).   Google Scholar

[2]

C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux,, J. Math. Anal. Appl., 40 (1972), 769.  doi: 10.1016/0022-247X(72)90019-4.  Google Scholar

[3]

C. P. Boyer, The Sasakian geometry of the Heisenberg group,, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 251.   Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, to appear in Comm. Math. Phys. , (2014).   Google Scholar

[6]

S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form,, J. Fluid Mech., 203 (1989), 1.  doi: 10.1017/S0022112089001357.  Google Scholar

[7]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 303.   Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation,, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81.  doi: 10.3792/pjaa.85.81.  Google Scholar

[10]

D. G. Ebin and S. C. Preston, Riemannian geometry of the contactomorphism group,, submitted, (2014).   Google Scholar

[11]

J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation,, Commun. Contemp. Math., 14 (2012).  doi: 10.1142/S0219199712500162.  Google Scholar

[12]

P. Hartman, Ordinary Differential Equations, second edition,, SIAM, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[13]

S. O. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857.  doi: 10.1063/1.532690.  Google Scholar

[14]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).   Google Scholar

[15]

H. P. McKean, Breakdown of the Camassa-Holm equation,, Comm. Pure Appl. Math., 57 (2004), 416.  doi: 10.1002/cpa.20003.  Google Scholar

[16]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[17]

I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point,, J. Fluid Mech., 12 (1962), 161.  doi: 10.1017/S0022112062000130.  Google Scholar

[18]

A. Sarria, Regularity of stagnation point-form solutions to the two-dimensional Euler equations,, to appear in Differential Integral Equations, (2014).   Google Scholar

[19]

R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid,, SIAM J. Math. Anal., 40 (2008), 1499.  doi: 10.1137/080713768.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[3]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[6]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[7]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[8]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[9]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[10]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[11]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[14]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[15]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[16]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[17]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[18]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[19]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[20]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]