-
Previous Article
On the least energy sign-changing solutions for a nonlinear elliptic system
- DCDS Home
- This Issue
-
Next Article
One-parameter solutions of the Euler-Arnold equation on the contactomorphism group
Local integration by parts and Pohozaev identities for higher order fractional Laplacians
1. | The University of Texas at Austin, Department of Mathematics, 2515 Speedway, Austin, TX 78751, United States |
2. | Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Avda. Diagonal 647, 08028 Barcelona, Spain |
As an immediate consequence of these results, we obtain a unique continuation property for the eigenfunctions $(-\Delta)^s\phi=\lambda\phi$ in $\Omega$, $\phi\equiv0$ in $\mathbb{R}^n\setminus\Omega$.
References:
[1] |
N. Abatangelo, Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian,, preprint arXiv (Oct. 2013)., (2013). Google Scholar |
[2] |
Y. Bozhkov and P. Olver, Pohozhaev and Morawetz identities in elastostatics and elastodynamics,, SIGMA, 7 (2011).
doi: 10.3842/SIGMA.2011.055. |
[3] |
C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results,, J. Funct. Anal., 263 (2012), 3741.
doi: 10.1016/j.jfa.2012.09.006. |
[4] |
S.-Y. A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91.
doi: 10.4310/MRL.1997.v4.n1.a9. |
[5] |
K. S. Chou and X.-P. Zhu, Some constancy results for nematic liquid crystals and harmonic maps,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 99.
|
[6] |
A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.
doi: 10.1016/j.jmaa.2004.03.034. |
[7] |
A. Dalibard and D. Gérard-Varet, On shape optimization problems involving the fractional Laplacian,, ESAIM Control Optim. Calc. Var., 19 (2013), 976.
doi: 10.1051/cocv/2012041. |
[8] |
J. Dolbeault and R. Stanczy, Non-existence and uniqueness results for supercritical semilinear elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (2010), 1311.
doi: 10.1007/s00023-009-0016-9. |
[9] |
B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian,, Fract. Calc. Appl. Anal., 15 (2012), 536.
doi: 10.2478/s13540-012-0038-8. |
[10] |
S. D. Eidelman, S. D. Ivasyshen and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-differential Equations of Parabolic Type,, Birkhauser, (2004).
doi: 10.1007/978-3-0348-7844-9. |
[11] |
R. K. Getoor, First passage times for symmetric stable processes in space,, Trans. Amer. Math. Soc., 101 (1961), 75.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[12] |
C. R. Graham and M. Zworski, Scattering matrix in conformal geometry,, Invent. Math., 152 (2003), 89.
doi: 10.1007/s00222-002-0268-1. |
[13] |
G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478.
doi: 10.1016/j.aim.2014.09.018. |
[14] |
G. Grubb, Spectral results for mixed problems and fractional elliptic operators,, J. Math. Anal. Appl., 421 (2015), 1616.
doi: 10.1016/j.jmaa.2014.07.081. |
[15] |
N. Katz and N. Pavlovic, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.
doi: 10.1007/s00039-002-8250-z. |
[16] |
J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math., 99 (1974), 14.
doi: 10.2307/1971012. |
[17] |
J. L. Lions, Exact controllability, stabilization, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.
doi: 10.1137/1030001. |
[18] |
R. L. Magin, O. Abdullah, D. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation,, J. Magnetic Resonance, 190 (2008), 255.
doi: 10.1016/j.jmr.2007.11.007. |
[19] |
T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local $Q$-curvature equation in dimension three,, Calc. Var. Partial Differential Equations, (2014), 1.
doi: 10.1007/s00526-014-0718-9. |
[20] |
C. Miao, J. Yang and J. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators,, preprint arXiv (Aug. 2013)., (2013). Google Scholar |
[21] |
E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125.
doi: 10.1080/03605309308820923. |
[22] |
J. H. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation,, SIAM J. Control Optim., 39 (2000), 1585.
doi: 10.1137/S0363012900358483. |
[23] |
S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.
|
[24] |
D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of $S^n$,, Indiana Univ. Math. J., 42 (1993), 1441.
doi: 10.1512/iumj.1993.42.42066. |
[25] |
P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.
doi: 10.1512/iumj.1986.35.35036. |
[26] |
F. Rellich, Darstellung der Eigenverte von $-\Delta u+\lambda u = 0$ durch ein Randintegral,, Math. Z., 46 (1940), 635.
doi: 10.1007/BF01181459. |
[27] |
X. Ros-Oton and J. Serra, Fractional Laplacian: Pohozaev identity and nonexistence results,, C. R. Math. Acad. Sci. Paris, 350 (2012), 505.
doi: 10.1016/j.crma.2012.05.011. |
[28] |
X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, J. Math. Pures Appl., 101 (2014), 275.
doi: 10.1016/j.matpur.2013.06.003. |
[29] |
X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian,, Arch. Rat. Mech. Anal., 213 (2014), 587.
doi: 10.1007/s00205-014-0740-2. |
[30] |
X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities,, Comm. Partial Differential Equations, 40 (2015), 115.
doi: 10.1080/03605302.2014.918144. |
[31] |
S. G. Samko, Hypersingular Integrals and Their Applications,, Taylor and Francis, (2002).
|
[32] |
R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation,, Comm. Pure Appl. Math., 41 (1988), 317.
doi: 10.1002/cpa.3160410305. |
[33] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.
doi: 10.1002/cpa.20153. |
[34] |
P. Sjölin, Regularity of solutions to the Schödinger equation,, Duke Math. J., 55 (1987), 699.
doi: 10.1215/S0012-7094-87-05535-9. |
[35] |
W. A. Strauss, Nonlinear Wave Equations,, CBMS Regional Conference Series, 73 (1989).
|
[36] |
T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.
doi: 10.2140/apde.2009.2.361. |
[37] |
K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. J. Math., 98 (1976), 1059.
doi: 10.2307/2374041. |
[38] |
R. van der Vorst, Variational identities and applications to differential systems,, Arch. Rat. Mech. Anal., 116 (1992), 375.
doi: 10.1007/BF00375674. |
[39] |
R. Yang, On higher order extensions for the fractional Laplacian,, preprint arXiv (Feb. 2013)., (2013). Google Scholar |
[40] |
T. Zhu and J. M. Harris, Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians,, Geophysics, 79 (2014), 1.
doi: 10.1190/geo2013-0245.1. |
show all references
References:
[1] |
N. Abatangelo, Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian,, preprint arXiv (Oct. 2013)., (2013). Google Scholar |
[2] |
Y. Bozhkov and P. Olver, Pohozhaev and Morawetz identities in elastostatics and elastodynamics,, SIGMA, 7 (2011).
doi: 10.3842/SIGMA.2011.055. |
[3] |
C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results,, J. Funct. Anal., 263 (2012), 3741.
doi: 10.1016/j.jfa.2012.09.006. |
[4] |
S.-Y. A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91.
doi: 10.4310/MRL.1997.v4.n1.a9. |
[5] |
K. S. Chou and X.-P. Zhu, Some constancy results for nematic liquid crystals and harmonic maps,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 99.
|
[6] |
A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.
doi: 10.1016/j.jmaa.2004.03.034. |
[7] |
A. Dalibard and D. Gérard-Varet, On shape optimization problems involving the fractional Laplacian,, ESAIM Control Optim. Calc. Var., 19 (2013), 976.
doi: 10.1051/cocv/2012041. |
[8] |
J. Dolbeault and R. Stanczy, Non-existence and uniqueness results for supercritical semilinear elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (2010), 1311.
doi: 10.1007/s00023-009-0016-9. |
[9] |
B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian,, Fract. Calc. Appl. Anal., 15 (2012), 536.
doi: 10.2478/s13540-012-0038-8. |
[10] |
S. D. Eidelman, S. D. Ivasyshen and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-differential Equations of Parabolic Type,, Birkhauser, (2004).
doi: 10.1007/978-3-0348-7844-9. |
[11] |
R. K. Getoor, First passage times for symmetric stable processes in space,, Trans. Amer. Math. Soc., 101 (1961), 75.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[12] |
C. R. Graham and M. Zworski, Scattering matrix in conformal geometry,, Invent. Math., 152 (2003), 89.
doi: 10.1007/s00222-002-0268-1. |
[13] |
G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478.
doi: 10.1016/j.aim.2014.09.018. |
[14] |
G. Grubb, Spectral results for mixed problems and fractional elliptic operators,, J. Math. Anal. Appl., 421 (2015), 1616.
doi: 10.1016/j.jmaa.2014.07.081. |
[15] |
N. Katz and N. Pavlovic, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.
doi: 10.1007/s00039-002-8250-z. |
[16] |
J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math., 99 (1974), 14.
doi: 10.2307/1971012. |
[17] |
J. L. Lions, Exact controllability, stabilization, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.
doi: 10.1137/1030001. |
[18] |
R. L. Magin, O. Abdullah, D. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation,, J. Magnetic Resonance, 190 (2008), 255.
doi: 10.1016/j.jmr.2007.11.007. |
[19] |
T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local $Q$-curvature equation in dimension three,, Calc. Var. Partial Differential Equations, (2014), 1.
doi: 10.1007/s00526-014-0718-9. |
[20] |
C. Miao, J. Yang and J. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators,, preprint arXiv (Aug. 2013)., (2013). Google Scholar |
[21] |
E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125.
doi: 10.1080/03605309308820923. |
[22] |
J. H. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation,, SIAM J. Control Optim., 39 (2000), 1585.
doi: 10.1137/S0363012900358483. |
[23] |
S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.
|
[24] |
D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of $S^n$,, Indiana Univ. Math. J., 42 (1993), 1441.
doi: 10.1512/iumj.1993.42.42066. |
[25] |
P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.
doi: 10.1512/iumj.1986.35.35036. |
[26] |
F. Rellich, Darstellung der Eigenverte von $-\Delta u+\lambda u = 0$ durch ein Randintegral,, Math. Z., 46 (1940), 635.
doi: 10.1007/BF01181459. |
[27] |
X. Ros-Oton and J. Serra, Fractional Laplacian: Pohozaev identity and nonexistence results,, C. R. Math. Acad. Sci. Paris, 350 (2012), 505.
doi: 10.1016/j.crma.2012.05.011. |
[28] |
X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, J. Math. Pures Appl., 101 (2014), 275.
doi: 10.1016/j.matpur.2013.06.003. |
[29] |
X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian,, Arch. Rat. Mech. Anal., 213 (2014), 587.
doi: 10.1007/s00205-014-0740-2. |
[30] |
X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities,, Comm. Partial Differential Equations, 40 (2015), 115.
doi: 10.1080/03605302.2014.918144. |
[31] |
S. G. Samko, Hypersingular Integrals and Their Applications,, Taylor and Francis, (2002).
|
[32] |
R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation,, Comm. Pure Appl. Math., 41 (1988), 317.
doi: 10.1002/cpa.3160410305. |
[33] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.
doi: 10.1002/cpa.20153. |
[34] |
P. Sjölin, Regularity of solutions to the Schödinger equation,, Duke Math. J., 55 (1987), 699.
doi: 10.1215/S0012-7094-87-05535-9. |
[35] |
W. A. Strauss, Nonlinear Wave Equations,, CBMS Regional Conference Series, 73 (1989).
|
[36] |
T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.
doi: 10.2140/apde.2009.2.361. |
[37] |
K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. J. Math., 98 (1976), 1059.
doi: 10.2307/2374041. |
[38] |
R. van der Vorst, Variational identities and applications to differential systems,, Arch. Rat. Mech. Anal., 116 (1992), 375.
doi: 10.1007/BF00375674. |
[39] |
R. Yang, On higher order extensions for the fractional Laplacian,, preprint arXiv (Feb. 2013)., (2013). Google Scholar |
[40] |
T. Zhu and J. M. Harris, Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians,, Geophysics, 79 (2014), 1.
doi: 10.1190/geo2013-0245.1. |
[1] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[2] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[3] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[4] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[5] |
Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151 |
[6] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[7] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[8] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[9] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[10] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[11] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[12] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[13] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[14] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[15] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[16] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[17] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[18] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[19] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[20] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]