May  2015, 35(5): 2131-2150. doi: 10.3934/dcds.2015.35.2131

Local integration by parts and Pohozaev identities for higher order fractional Laplacians

1. 

The University of Texas at Austin, Department of Mathematics, 2515 Speedway, Austin, TX 78751, United States

2. 

Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Avda. Diagonal 647, 08028 Barcelona, Spain

Received  June 2014 Revised  September 2014 Published  December 2014

We establish an integration by parts formula in bounded domains for the higher order fractional Laplacian $(-\Delta)^s$ with $s>1$. We also obtain the Pohozaev identity for this operator. Both identities involve local boundary terms, and they extend the identities obtained by the authors in the case $s\in(0,1)$.
    As an immediate consequence of these results, we obtain a unique continuation property for the eigenfunctions $(-\Delta)^s\phi=\lambda\phi$ in $\Omega$, $\phi\equiv0$ in $\mathbb{R}^n\setminus\Omega$.
Citation: Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131
References:
[1]

N. Abatangelo, Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian,, preprint arXiv (Oct. 2013)., (2013).   Google Scholar

[2]

Y. Bozhkov and P. Olver, Pohozhaev and Morawetz identities in elastostatics and elastodynamics,, SIGMA, 7 (2011).  doi: 10.3842/SIGMA.2011.055.  Google Scholar

[3]

C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results,, J. Funct. Anal., 263 (2012), 3741.  doi: 10.1016/j.jfa.2012.09.006.  Google Scholar

[4]

S.-Y. A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91.  doi: 10.4310/MRL.1997.v4.n1.a9.  Google Scholar

[5]

K. S. Chou and X.-P. Zhu, Some constancy results for nematic liquid crystals and harmonic maps,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 99.   Google Scholar

[6]

A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[7]

A. Dalibard and D. Gérard-Varet, On shape optimization problems involving the fractional Laplacian,, ESAIM Control Optim. Calc. Var., 19 (2013), 976.  doi: 10.1051/cocv/2012041.  Google Scholar

[8]

J. Dolbeault and R. Stanczy, Non-existence and uniqueness results for supercritical semilinear elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (2010), 1311.  doi: 10.1007/s00023-009-0016-9.  Google Scholar

[9]

B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian,, Fract. Calc. Appl. Anal., 15 (2012), 536.  doi: 10.2478/s13540-012-0038-8.  Google Scholar

[10]

S. D. Eidelman, S. D. Ivasyshen and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-differential Equations of Parabolic Type,, Birkhauser, (2004).  doi: 10.1007/978-3-0348-7844-9.  Google Scholar

[11]

R. K. Getoor, First passage times for symmetric stable processes in space,, Trans. Amer. Math. Soc., 101 (1961), 75.  doi: 10.1090/S0002-9947-1961-0137148-5.  Google Scholar

[12]

C. R. Graham and M. Zworski, Scattering matrix in conformal geometry,, Invent. Math., 152 (2003), 89.  doi: 10.1007/s00222-002-0268-1.  Google Scholar

[13]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[14]

G. Grubb, Spectral results for mixed problems and fractional elliptic operators,, J. Math. Anal. Appl., 421 (2015), 1616.  doi: 10.1016/j.jmaa.2014.07.081.  Google Scholar

[15]

N. Katz and N. Pavlovic, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[16]

J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math., 99 (1974), 14.  doi: 10.2307/1971012.  Google Scholar

[17]

J. L. Lions, Exact controllability, stabilization, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[18]

R. L. Magin, O. Abdullah, D. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation,, J. Magnetic Resonance, 190 (2008), 255.  doi: 10.1016/j.jmr.2007.11.007.  Google Scholar

[19]

T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local $Q$-curvature equation in dimension three,, Calc. Var. Partial Differential Equations, (2014), 1.  doi: 10.1007/s00526-014-0718-9.  Google Scholar

[20]

C. Miao, J. Yang and J. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators,, preprint arXiv (Aug. 2013)., (2013).   Google Scholar

[21]

E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125.  doi: 10.1080/03605309308820923.  Google Scholar

[22]

J. H. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation,, SIAM J. Control Optim., 39 (2000), 1585.  doi: 10.1137/S0363012900358483.  Google Scholar

[23]

S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[24]

D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of $S^n$,, Indiana Univ. Math. J., 42 (1993), 1441.  doi: 10.1512/iumj.1993.42.42066.  Google Scholar

[25]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[26]

F. Rellich, Darstellung der Eigenverte von $-\Delta u+\lambda u = 0$ durch ein Randintegral,, Math. Z., 46 (1940), 635.  doi: 10.1007/BF01181459.  Google Scholar

[27]

X. Ros-Oton and J. Serra, Fractional Laplacian: Pohozaev identity and nonexistence results,, C. R. Math. Acad. Sci. Paris, 350 (2012), 505.  doi: 10.1016/j.crma.2012.05.011.  Google Scholar

[28]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, J. Math. Pures Appl., 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[29]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian,, Arch. Rat. Mech. Anal., 213 (2014), 587.  doi: 10.1007/s00205-014-0740-2.  Google Scholar

[30]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities,, Comm. Partial Differential Equations, 40 (2015), 115.  doi: 10.1080/03605302.2014.918144.  Google Scholar

[31]

S. G. Samko, Hypersingular Integrals and Their Applications,, Taylor and Francis, (2002).   Google Scholar

[32]

R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation,, Comm. Pure Appl. Math., 41 (1988), 317.  doi: 10.1002/cpa.3160410305.  Google Scholar

[33]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[34]

P. Sjölin, Regularity of solutions to the Schödinger equation,, Duke Math. J., 55 (1987), 699.  doi: 10.1215/S0012-7094-87-05535-9.  Google Scholar

[35]

W. A. Strauss, Nonlinear Wave Equations,, CBMS Regional Conference Series, 73 (1989).   Google Scholar

[36]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

[37]

K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. J. Math., 98 (1976), 1059.  doi: 10.2307/2374041.  Google Scholar

[38]

R. van der Vorst, Variational identities and applications to differential systems,, Arch. Rat. Mech. Anal., 116 (1992), 375.  doi: 10.1007/BF00375674.  Google Scholar

[39]

R. Yang, On higher order extensions for the fractional Laplacian,, preprint arXiv (Feb. 2013)., (2013).   Google Scholar

[40]

T. Zhu and J. M. Harris, Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians,, Geophysics, 79 (2014), 1.  doi: 10.1190/geo2013-0245.1.  Google Scholar

show all references

References:
[1]

N. Abatangelo, Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian,, preprint arXiv (Oct. 2013)., (2013).   Google Scholar

[2]

Y. Bozhkov and P. Olver, Pohozhaev and Morawetz identities in elastostatics and elastodynamics,, SIGMA, 7 (2011).  doi: 10.3842/SIGMA.2011.055.  Google Scholar

[3]

C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results,, J. Funct. Anal., 263 (2012), 3741.  doi: 10.1016/j.jfa.2012.09.006.  Google Scholar

[4]

S.-Y. A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91.  doi: 10.4310/MRL.1997.v4.n1.a9.  Google Scholar

[5]

K. S. Chou and X.-P. Zhu, Some constancy results for nematic liquid crystals and harmonic maps,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 99.   Google Scholar

[6]

A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[7]

A. Dalibard and D. Gérard-Varet, On shape optimization problems involving the fractional Laplacian,, ESAIM Control Optim. Calc. Var., 19 (2013), 976.  doi: 10.1051/cocv/2012041.  Google Scholar

[8]

J. Dolbeault and R. Stanczy, Non-existence and uniqueness results for supercritical semilinear elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (2010), 1311.  doi: 10.1007/s00023-009-0016-9.  Google Scholar

[9]

B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian,, Fract. Calc. Appl. Anal., 15 (2012), 536.  doi: 10.2478/s13540-012-0038-8.  Google Scholar

[10]

S. D. Eidelman, S. D. Ivasyshen and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-differential Equations of Parabolic Type,, Birkhauser, (2004).  doi: 10.1007/978-3-0348-7844-9.  Google Scholar

[11]

R. K. Getoor, First passage times for symmetric stable processes in space,, Trans. Amer. Math. Soc., 101 (1961), 75.  doi: 10.1090/S0002-9947-1961-0137148-5.  Google Scholar

[12]

C. R. Graham and M. Zworski, Scattering matrix in conformal geometry,, Invent. Math., 152 (2003), 89.  doi: 10.1007/s00222-002-0268-1.  Google Scholar

[13]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[14]

G. Grubb, Spectral results for mixed problems and fractional elliptic operators,, J. Math. Anal. Appl., 421 (2015), 1616.  doi: 10.1016/j.jmaa.2014.07.081.  Google Scholar

[15]

N. Katz and N. Pavlovic, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[16]

J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math., 99 (1974), 14.  doi: 10.2307/1971012.  Google Scholar

[17]

J. L. Lions, Exact controllability, stabilization, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[18]

R. L. Magin, O. Abdullah, D. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation,, J. Magnetic Resonance, 190 (2008), 255.  doi: 10.1016/j.jmr.2007.11.007.  Google Scholar

[19]

T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local $Q$-curvature equation in dimension three,, Calc. Var. Partial Differential Equations, (2014), 1.  doi: 10.1007/s00526-014-0718-9.  Google Scholar

[20]

C. Miao, J. Yang and J. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators,, preprint arXiv (Aug. 2013)., (2013).   Google Scholar

[21]

E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125.  doi: 10.1080/03605309308820923.  Google Scholar

[22]

J. H. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation,, SIAM J. Control Optim., 39 (2000), 1585.  doi: 10.1137/S0363012900358483.  Google Scholar

[23]

S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[24]

D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of $S^n$,, Indiana Univ. Math. J., 42 (1993), 1441.  doi: 10.1512/iumj.1993.42.42066.  Google Scholar

[25]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[26]

F. Rellich, Darstellung der Eigenverte von $-\Delta u+\lambda u = 0$ durch ein Randintegral,, Math. Z., 46 (1940), 635.  doi: 10.1007/BF01181459.  Google Scholar

[27]

X. Ros-Oton and J. Serra, Fractional Laplacian: Pohozaev identity and nonexistence results,, C. R. Math. Acad. Sci. Paris, 350 (2012), 505.  doi: 10.1016/j.crma.2012.05.011.  Google Scholar

[28]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, J. Math. Pures Appl., 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[29]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian,, Arch. Rat. Mech. Anal., 213 (2014), 587.  doi: 10.1007/s00205-014-0740-2.  Google Scholar

[30]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities,, Comm. Partial Differential Equations, 40 (2015), 115.  doi: 10.1080/03605302.2014.918144.  Google Scholar

[31]

S. G. Samko, Hypersingular Integrals and Their Applications,, Taylor and Francis, (2002).   Google Scholar

[32]

R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation,, Comm. Pure Appl. Math., 41 (1988), 317.  doi: 10.1002/cpa.3160410305.  Google Scholar

[33]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[34]

P. Sjölin, Regularity of solutions to the Schödinger equation,, Duke Math. J., 55 (1987), 699.  doi: 10.1215/S0012-7094-87-05535-9.  Google Scholar

[35]

W. A. Strauss, Nonlinear Wave Equations,, CBMS Regional Conference Series, 73 (1989).   Google Scholar

[36]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

[37]

K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. J. Math., 98 (1976), 1059.  doi: 10.2307/2374041.  Google Scholar

[38]

R. van der Vorst, Variational identities and applications to differential systems,, Arch. Rat. Mech. Anal., 116 (1992), 375.  doi: 10.1007/BF00375674.  Google Scholar

[39]

R. Yang, On higher order extensions for the fractional Laplacian,, preprint arXiv (Feb. 2013)., (2013).   Google Scholar

[40]

T. Zhu and J. M. Harris, Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians,, Geophysics, 79 (2014), 1.  doi: 10.1190/geo2013-0245.1.  Google Scholar

[1]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[2]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[3]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[4]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[5]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[6]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[7]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[8]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[9]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[10]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[11]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[12]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[15]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[16]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[17]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[18]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[19]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[20]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]