May  2015, 35(5): 2165-2175. doi: 10.3934/dcds.2015.35.2165

Random backward iteration algorithm for Julia sets of rational semigroups

1. 

Department of Mathematical Sciences, Ball State University, Muncie, IN 47306

2. 

Department of Mathematics, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043

Received  February 2014 Revised  October 2014 Published  December 2014

We provide proof that a random backward iteration algorithm for approximating Julia sets of rational semigroups, previously proven to work in the context of iteration of a rational function of degree two or more, extends to rational semigroups (of a certain type). We also provide some consequences of this result.
Citation: Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165
References:
[1]

M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems,, Constr. Approx., 5 (1989), 3.  doi: 10.1007/BF01889596.  Google Scholar

[2]

D. Boyd, An invariant measure for finitely generated rational semigroups,, Complex Variables Theory Appl., 39 (1999), 229.  doi: 10.1080/17476939908815193.  Google Scholar

[3]

T. Butz, W. Conatser, B. Dean, K. Hart, Y. Li and R. Stankewitz, Julia 2.0 fractal drawing program,, , ().   Google Scholar

[4]

J. H. Elton, An ergodic theorem for iterated maps,, Ergodic Theory Dynam. Systems, 7 (1987), 481.  doi: 10.1017/S0143385700004168.  Google Scholar

[5]

D. Fried, S. M. Marotta and R. Stankewitz, Complex dynamics of Möbius semigroups,, Ergodic Theory Dynam. Systems, 32 (2012), 1889.  doi: 10.1017/S014338571100054X.  Google Scholar

[6]

N. Fujishima, Chaotic dynamical systems and fractals,, Bachelor thesis, (2013).   Google Scholar

[7]

H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces,, Israel J. Math., 46 (1983), 12.  doi: 10.1007/BF02760620.  Google Scholar

[8]

Z. Gong and F. Ren, A random dynamical system formed by infinitely many functions,, Journal of Fudan University, 35 (1996), 387.   Google Scholar

[9]

J. Hawkins and M. Taylor, Maximal entropy measure for rational maps and a random iteration algorithme,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1442.  doi: 10.1142/S021812740300731X.  Google Scholar

[10]

A. Hinkkanen and G. Martin, The dynamics of semigroups of rational functions I,, Proc. London Math. Soc., 73 (1996), 358.  doi: 10.1112/plms/s3-73.2.358.  Google Scholar

[11]

A. Hinkkanen and G. Martin, Julia sets of rational semigroups,, Math. Z., 222 (1996), 161.  doi: 10.1007/BF02621862.  Google Scholar

[12]

J. E. Hutchinson, Fractals and self-similarity,, Indiana Univ. Math. J., 30 (1981), 713.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[13]

A. F. A. Lopes and R. Mañé, An invariant measure for rational maps,, Bol. Soc. Bras. Math., 14 (1983), 45.  doi: 10.1007/BF02584744.  Google Scholar

[14]

M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere,, Ergod. Th. & Dynam. Sys., 3 (1983), 351.  doi: 10.1017/S0143385700002030.  Google Scholar

[15]

R. Mañé, On the uniqueness of the maximizing measure for rational maps,, Bol. Soc. Bras. Math., 14 (1983), 27.  doi: 10.1007/BF02584743.  Google Scholar

[16]

R. Stankewitz, Completely Invariant Julia Sets of Rational Semigroups,, Ph.D. Thesis. University of Illinois, (1998).   Google Scholar

[17]

R. Stankewitz, Completely invariant Julia sets of polynomial semigroups,, Proc. Amer. Math. Soc., 127 (1999), 2889.  doi: 10.1090/S0002-9939-99-04857-1.  Google Scholar

[18]

R. Stankewitz, Completely invariant sets of normality for rational semigroups,, Complex Variables Theory Appl., 40 (2000), 199.  doi: 10.1080/17476930008815219.  Google Scholar

[19]

R. Stankewitz, T. Sugawa and H. Sumi, Some counterexamples in dynamics of rational semigroups,, Ann. Acad. Sci. Fenn. Math., 29 (2004), 357.   Google Scholar

[20]

D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains,, Ann. of Math. (2), 122 (1985), 401.  doi: 10.2307/1971308.  Google Scholar

[21]

H. Sumi, Skew product maps related to finitely generated rational semigroups,, Nonlinearity, 13 (2000), 995.  doi: 10.1088/0951-7715/13/4/302.  Google Scholar

[22]

H. Sumi, Random complex dynamics and semigroups of holomorphic maps,, Proc. Lond. Math. Soc. (3), 102 (2011), 50.  doi: 10.1112/plms/pdq013.  Google Scholar

[23]

H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics,, Adv. Math., 245 (2013), 137.  doi: 10.1016/j.aim.2013.05.023.  Google Scholar

[24]

W. Zhou and F. Ren, The Julia sets of the random iteration of rational functions,, Chinese Science Bulletin, 37 (1992), 969.   Google Scholar

show all references

References:
[1]

M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems,, Constr. Approx., 5 (1989), 3.  doi: 10.1007/BF01889596.  Google Scholar

[2]

D. Boyd, An invariant measure for finitely generated rational semigroups,, Complex Variables Theory Appl., 39 (1999), 229.  doi: 10.1080/17476939908815193.  Google Scholar

[3]

T. Butz, W. Conatser, B. Dean, K. Hart, Y. Li and R. Stankewitz, Julia 2.0 fractal drawing program,, , ().   Google Scholar

[4]

J. H. Elton, An ergodic theorem for iterated maps,, Ergodic Theory Dynam. Systems, 7 (1987), 481.  doi: 10.1017/S0143385700004168.  Google Scholar

[5]

D. Fried, S. M. Marotta and R. Stankewitz, Complex dynamics of Möbius semigroups,, Ergodic Theory Dynam. Systems, 32 (2012), 1889.  doi: 10.1017/S014338571100054X.  Google Scholar

[6]

N. Fujishima, Chaotic dynamical systems and fractals,, Bachelor thesis, (2013).   Google Scholar

[7]

H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces,, Israel J. Math., 46 (1983), 12.  doi: 10.1007/BF02760620.  Google Scholar

[8]

Z. Gong and F. Ren, A random dynamical system formed by infinitely many functions,, Journal of Fudan University, 35 (1996), 387.   Google Scholar

[9]

J. Hawkins and M. Taylor, Maximal entropy measure for rational maps and a random iteration algorithme,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1442.  doi: 10.1142/S021812740300731X.  Google Scholar

[10]

A. Hinkkanen and G. Martin, The dynamics of semigroups of rational functions I,, Proc. London Math. Soc., 73 (1996), 358.  doi: 10.1112/plms/s3-73.2.358.  Google Scholar

[11]

A. Hinkkanen and G. Martin, Julia sets of rational semigroups,, Math. Z., 222 (1996), 161.  doi: 10.1007/BF02621862.  Google Scholar

[12]

J. E. Hutchinson, Fractals and self-similarity,, Indiana Univ. Math. J., 30 (1981), 713.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[13]

A. F. A. Lopes and R. Mañé, An invariant measure for rational maps,, Bol. Soc. Bras. Math., 14 (1983), 45.  doi: 10.1007/BF02584744.  Google Scholar

[14]

M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere,, Ergod. Th. & Dynam. Sys., 3 (1983), 351.  doi: 10.1017/S0143385700002030.  Google Scholar

[15]

R. Mañé, On the uniqueness of the maximizing measure for rational maps,, Bol. Soc. Bras. Math., 14 (1983), 27.  doi: 10.1007/BF02584743.  Google Scholar

[16]

R. Stankewitz, Completely Invariant Julia Sets of Rational Semigroups,, Ph.D. Thesis. University of Illinois, (1998).   Google Scholar

[17]

R. Stankewitz, Completely invariant Julia sets of polynomial semigroups,, Proc. Amer. Math. Soc., 127 (1999), 2889.  doi: 10.1090/S0002-9939-99-04857-1.  Google Scholar

[18]

R. Stankewitz, Completely invariant sets of normality for rational semigroups,, Complex Variables Theory Appl., 40 (2000), 199.  doi: 10.1080/17476930008815219.  Google Scholar

[19]

R. Stankewitz, T. Sugawa and H. Sumi, Some counterexamples in dynamics of rational semigroups,, Ann. Acad. Sci. Fenn. Math., 29 (2004), 357.   Google Scholar

[20]

D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains,, Ann. of Math. (2), 122 (1985), 401.  doi: 10.2307/1971308.  Google Scholar

[21]

H. Sumi, Skew product maps related to finitely generated rational semigroups,, Nonlinearity, 13 (2000), 995.  doi: 10.1088/0951-7715/13/4/302.  Google Scholar

[22]

H. Sumi, Random complex dynamics and semigroups of holomorphic maps,, Proc. Lond. Math. Soc. (3), 102 (2011), 50.  doi: 10.1112/plms/pdq013.  Google Scholar

[23]

H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics,, Adv. Math., 245 (2013), 137.  doi: 10.1016/j.aim.2013.05.023.  Google Scholar

[24]

W. Zhou and F. Ren, The Julia sets of the random iteration of rational functions,, Chinese Science Bulletin, 37 (1992), 969.   Google Scholar

[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[3]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[4]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[5]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[6]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[7]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[8]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[9]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[10]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[11]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[12]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[14]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[15]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[16]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[17]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[18]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[19]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[20]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]