-
Previous Article
Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity
- DCDS Home
- This Issue
-
Next Article
Random backward iteration algorithm for Julia sets of rational semigroups
Center of planar quintic quasi--homogeneous polynomial differential systems
1. | Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China |
2. | Department of Mathematics, Southern Polytechnic State University, Marietta, GA 30060, United States |
3. | Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China |
References:
[1] |
A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.
doi: 10.1016/j.nonrwa.2011.07.056. |
[2] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 396-420.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems, Nonlinear Anal., 73 (2010), 1318-1327.
doi: 10.1016/j.na.2010.04.059. |
[4] |
W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006. |
[5] |
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1925), 181-196, Amer. Math. Soc. Transl., 1954 (1954), 1-19. |
[6] |
L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007), 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066. |
[7] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, Berlin, 1982. |
[8] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006. |
[9] |
I. García, On the integrability of quasihomogeneous and related planar vector fields, Internat. J. Bifur. Chaos, 13 (2003), 995-1002.
doi: 10.1142/S021812740300700X. |
[10] |
B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability, J. Diff. Eqns., 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Diff. Eqns., 246 (2009), 3126-3135.
doi: 10.1016/j.jde.2009.02.010. |
[12] |
J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.
doi: 10.3934/dcds.2013.33.4531. |
[13] |
A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37 (1996), 1871-1893.
doi: 10.1063/1.531484. |
[14] |
Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems, Adv. Difference Eqns., (2007), Art ID 98427, 10 pp. |
[15] |
C. Li, Two problems of planar quadratic systems, (Chinese), Science in China Math, 26 (1983), 471-481. |
[16] |
W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers, J. Dyn. Diff. Eqns., 21 (2009), 133-152.
doi: 10.1007/s10884-008-9126-1. |
[17] |
H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dyn., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8. |
[18] |
J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems, Nonlinearity, 15 (2002), 1269-1280.
doi: 10.1088/0951-7715/15/4/313. |
[19] |
K. E. Malkin, Criteria for the center for a certain differential equation, (Russian), Volz. Mat. Sb. Vyp, 2 (1964), 87-91. |
[20] |
P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers, J. Diff. Eqns., 121 (1995), 67-108.
doi: 10.1006/jdeq.1995.1122. |
[21] |
R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields, Qual. Theory Dyn. Syst., 13 (2014), 39-72.
doi: 10.1007/s12346-013-0105-5. |
[22] |
V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach, Birkhäuser, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[23] |
C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center, J. Diff. Eqns., 123 (1995), 388-436.
doi: 10.1006/jdeq.1995.1168. |
[24] |
G. Sansone and R. Conti, Non-Linear Differential Equations, $2^{nd}$ edition, Pergamon Press, New York, 1964. |
[25] |
D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields, Expo. Math., 8 (1990), 3-25. |
[26] |
Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions, Nonlinearity, 17 (2004), 1407-1426.
doi: 10.1088/0951-7715/17/4/015. |
[27] |
N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, (Russian), Dokl. Akad. Nauk SSSR, 301 (1988), 1297-1301, translation in: Soviet Math. Dokl., 38 (1989), 198-201. |
[28] |
Y. Q. Ye, Theory of Limit Cycles, Trans. Math. Monographs 66, Amer. Math. Soc., Providence, RI, 1986. |
[29] |
Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems, Shanghai Science $&$ Technology Pub., Shanghai, 1995. |
[30] |
H. Yoshida, Necessary condition for existence of algebraic first integrals I and II, Celestial Mech., 31 (1983), 363-379.
doi: 10.1007/BF01230293. |
[31] |
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monographs, 101, Amer. Math. Soc., Providence, 1992. |
[32] |
H. Zoladek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994), 79-136. |
show all references
References:
[1] |
A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.
doi: 10.1016/j.nonrwa.2011.07.056. |
[2] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 396-420.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems, Nonlinear Anal., 73 (2010), 1318-1327.
doi: 10.1016/j.na.2010.04.059. |
[4] |
W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006. |
[5] |
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1925), 181-196, Amer. Math. Soc. Transl., 1954 (1954), 1-19. |
[6] |
L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007), 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066. |
[7] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, Berlin, 1982. |
[8] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006. |
[9] |
I. García, On the integrability of quasihomogeneous and related planar vector fields, Internat. J. Bifur. Chaos, 13 (2003), 995-1002.
doi: 10.1142/S021812740300700X. |
[10] |
B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability, J. Diff. Eqns., 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Diff. Eqns., 246 (2009), 3126-3135.
doi: 10.1016/j.jde.2009.02.010. |
[12] |
J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.
doi: 10.3934/dcds.2013.33.4531. |
[13] |
A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37 (1996), 1871-1893.
doi: 10.1063/1.531484. |
[14] |
Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems, Adv. Difference Eqns., (2007), Art ID 98427, 10 pp. |
[15] |
C. Li, Two problems of planar quadratic systems, (Chinese), Science in China Math, 26 (1983), 471-481. |
[16] |
W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers, J. Dyn. Diff. Eqns., 21 (2009), 133-152.
doi: 10.1007/s10884-008-9126-1. |
[17] |
H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dyn., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8. |
[18] |
J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems, Nonlinearity, 15 (2002), 1269-1280.
doi: 10.1088/0951-7715/15/4/313. |
[19] |
K. E. Malkin, Criteria for the center for a certain differential equation, (Russian), Volz. Mat. Sb. Vyp, 2 (1964), 87-91. |
[20] |
P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers, J. Diff. Eqns., 121 (1995), 67-108.
doi: 10.1006/jdeq.1995.1122. |
[21] |
R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields, Qual. Theory Dyn. Syst., 13 (2014), 39-72.
doi: 10.1007/s12346-013-0105-5. |
[22] |
V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach, Birkhäuser, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[23] |
C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center, J. Diff. Eqns., 123 (1995), 388-436.
doi: 10.1006/jdeq.1995.1168. |
[24] |
G. Sansone and R. Conti, Non-Linear Differential Equations, $2^{nd}$ edition, Pergamon Press, New York, 1964. |
[25] |
D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields, Expo. Math., 8 (1990), 3-25. |
[26] |
Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions, Nonlinearity, 17 (2004), 1407-1426.
doi: 10.1088/0951-7715/17/4/015. |
[27] |
N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, (Russian), Dokl. Akad. Nauk SSSR, 301 (1988), 1297-1301, translation in: Soviet Math. Dokl., 38 (1989), 198-201. |
[28] |
Y. Q. Ye, Theory of Limit Cycles, Trans. Math. Monographs 66, Amer. Math. Soc., Providence, RI, 1986. |
[29] |
Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems, Shanghai Science $&$ Technology Pub., Shanghai, 1995. |
[30] |
H. Yoshida, Necessary condition for existence of algebraic first integrals I and II, Celestial Mech., 31 (1983), 363-379.
doi: 10.1007/BF01230293. |
[31] |
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monographs, 101, Amer. Math. Soc., Providence, 1992. |
[32] |
H. Zoladek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994), 79-136. |
[1] |
Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531 |
[2] |
Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121 |
[3] |
Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150 |
[4] |
Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015 |
[5] |
Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 |
[6] |
Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309 |
[7] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[8] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[9] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 |
[10] |
Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641 |
[11] |
Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082 |
[12] |
Zecen He, Haihua Liang, Xiang Zhang. Limit cycles and global dynamic of planar cubic semi-quasi-homogeneous systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 421-441. doi: 10.3934/dcdsb.2021049 |
[13] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[14] |
Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial and Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271 |
[15] |
Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225 |
[16] |
Can Gao, Joachim Krieger. Optimal polynomial blow up range for critical wave maps. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1705-1741. doi: 10.3934/cpaa.2015.14.1705 |
[17] |
Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345 |
[18] |
Kunio Hidano, Kazuyoshi Yokoyama. Global existence and blow up for systems of nonlinear wave equations related to the weak null condition. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022058 |
[19] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
[20] |
Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control and Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]