-
Previous Article
Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity
- DCDS Home
- This Issue
-
Next Article
Random backward iteration algorithm for Julia sets of rational semigroups
Center of planar quintic quasi--homogeneous polynomial differential systems
1. | Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China |
2. | Department of Mathematics, Southern Polytechnic State University, Marietta, GA 30060, United States |
3. | Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China |
References:
[1] |
A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.
doi: 10.1016/j.nonrwa.2011.07.056. |
[2] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.
doi: 10.1016/j.na.2010.04.059. |
[4] |
W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.
doi: 10.1016/j.aim.2013.12.006. |
[5] |
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.
|
[6] |
L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.
doi: 10.1016/j.jmaa.2006.09.066. |
[7] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).
|
[8] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).
|
[9] |
I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.
doi: 10.1142/S021812740300700X. |
[10] |
B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.
doi: 10.1016/j.jde.2009.02.010. |
[12] |
J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.
doi: 10.3934/dcds.2013.33.4531. |
[13] |
A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.
doi: 10.1063/1.531484. |
[14] |
Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).
|
[15] |
C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.
|
[16] |
W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.
doi: 10.1007/s10884-008-9126-1. |
[17] |
H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.
doi: 10.1007/s11071-014-1541-8. |
[18] |
J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.
doi: 10.1088/0951-7715/15/4/313. |
[19] |
K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.
|
[20] |
P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.
doi: 10.1006/jdeq.1995.1122. |
[21] |
R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.
doi: 10.1007/s12346-013-0105-5. |
[22] |
V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).
doi: 10.1007/978-0-8176-4727-8. |
[23] |
C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.
doi: 10.1006/jdeq.1995.1168. |
[24] |
G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).
|
[25] |
D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.
|
[26] |
Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.
doi: 10.1088/0951-7715/17/4/015. |
[27] |
N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.
|
[28] |
Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).
|
[29] |
Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995). Google Scholar |
[30] |
H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.
doi: 10.1007/BF01230293. |
[31] |
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).
|
[32] |
H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.
|
show all references
References:
[1] |
A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.
doi: 10.1016/j.nonrwa.2011.07.056. |
[2] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.
doi: 10.1016/j.na.2010.04.059. |
[4] |
W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.
doi: 10.1016/j.aim.2013.12.006. |
[5] |
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.
|
[6] |
L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.
doi: 10.1016/j.jmaa.2006.09.066. |
[7] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).
|
[8] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).
|
[9] |
I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.
doi: 10.1142/S021812740300700X. |
[10] |
B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.
doi: 10.1016/j.jde.2009.02.010. |
[12] |
J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.
doi: 10.3934/dcds.2013.33.4531. |
[13] |
A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.
doi: 10.1063/1.531484. |
[14] |
Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).
|
[15] |
C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.
|
[16] |
W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.
doi: 10.1007/s10884-008-9126-1. |
[17] |
H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.
doi: 10.1007/s11071-014-1541-8. |
[18] |
J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.
doi: 10.1088/0951-7715/15/4/313. |
[19] |
K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.
|
[20] |
P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.
doi: 10.1006/jdeq.1995.1122. |
[21] |
R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.
doi: 10.1007/s12346-013-0105-5. |
[22] |
V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).
doi: 10.1007/978-0-8176-4727-8. |
[23] |
C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.
doi: 10.1006/jdeq.1995.1168. |
[24] |
G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).
|
[25] |
D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.
|
[26] |
Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.
doi: 10.1088/0951-7715/17/4/015. |
[27] |
N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.
|
[28] |
Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).
|
[29] |
Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995). Google Scholar |
[30] |
H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.
doi: 10.1007/BF01230293. |
[31] |
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).
|
[32] |
H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.
|
[1] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[2] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[3] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[4] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[5] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[6] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[7] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[8] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[9] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[10] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[11] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[12] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[13] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[14] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[15] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[16] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[17] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[18] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[19] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[20] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]