May  2015, 35(5): 2177-2191. doi: 10.3934/dcds.2015.35.2177

Center of planar quintic quasi--homogeneous polynomial differential systems

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

2. 

Department of Mathematics, Southern Polytechnic State University, Marietta, GA 30060, United States

3. 

Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China

Received  May 2014 Revised  July 2014 Published  December 2014

In this paper we first characterize all quasi--homogeneous but non--homogeneous planar polynomial differential systems of degree five, and then among which we classify all the ones having a center at the origin. Finally we present the topological phase portrait of the systems having a center at the origin.
Citation: Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177
References:
[1]

A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.  doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.   Google Scholar

[6]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).   Google Scholar

[8]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[9]

I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.  doi: 10.1142/S021812740300700X.  Google Scholar

[10]

B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.  doi: 10.1063/1.531484.  Google Scholar

[14]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).   Google Scholar

[15]

C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.   Google Scholar

[16]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.   Google Scholar

[20]

P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.  doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.  doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).   Google Scholar

[25]

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.   Google Scholar

[26]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.   Google Scholar

[28]

Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).   Google Scholar

[29]

Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995).   Google Scholar

[30]

H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.  doi: 10.1007/BF01230293.  Google Scholar

[31]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).   Google Scholar

[32]

H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.   Google Scholar

show all references

References:
[1]

A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.  doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.   Google Scholar

[6]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).   Google Scholar

[8]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[9]

I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.  doi: 10.1142/S021812740300700X.  Google Scholar

[10]

B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.  doi: 10.1063/1.531484.  Google Scholar

[14]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).   Google Scholar

[15]

C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.   Google Scholar

[16]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.   Google Scholar

[20]

P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.  doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.  doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).   Google Scholar

[25]

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.   Google Scholar

[26]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.   Google Scholar

[28]

Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).   Google Scholar

[29]

Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995).   Google Scholar

[30]

H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.  doi: 10.1007/BF01230293.  Google Scholar

[31]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).   Google Scholar

[32]

H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.   Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[5]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[6]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[7]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[8]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[9]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[16]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[17]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[18]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[19]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[20]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]