May  2015, 35(5): 2193-2207. doi: 10.3934/dcds.2015.35.2193

Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity

1. 

Department of Mathematics, Washington State University, Pullman, WA 99164-3113

Received  January 2014 Revised  October 2014 Published  December 2014

We study the two-dimensional magneto-micropolar fluid system. Making use of the structure of the system, we show that with zero angular viscosity the solution triple remains smooth for all time.
Citation: Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193
References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions,, Int. J. Engng. Sci., 12 (1974), 657.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[4]

C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion,, SIAM J. Math. Anal., 46 (2014), 588.  doi: 10.1137/130937718.  Google Scholar

[5]

M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 929.  doi: 10.1016/S0252-9602(13)60051-X.  Google Scholar

[6]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[7]

J.-Y. Chemin, Perfect Incompressible Fluids,, Clarendon Press, (1998).   Google Scholar

[8]

B.-Q. Dong and Z.-M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3245862.  Google Scholar

[9]

B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows,, Discrete Contin. Dyn. Syst., 23 (2009), 765.  doi: 10.3934/dcds.2009.23.765.  Google Scholar

[10]

B.Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Methods Appl. Sci., 34 (2011), 595.  doi: 10.1002/mma.1383.  Google Scholar

[11]

B.-Q. Dong and W. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.  doi: 10.1016/j.na.2010.06.029.  Google Scholar

[12]

B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity,, J. Differential Equations, 249 (2010), 200.  doi: 10.1016/j.jde.2010.03.016.  Google Scholar

[13]

A. C. Eringen, Simple microfluids,, Int. Engng. Sci., 2 (1964), 205.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[14]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[15]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Engng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[16]

H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation,, in Discrete and continuous dynamical systems, (2002), 439.   Google Scholar

[17]

Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion,, Z. Angew. Math. Phys., (2014), 1.  doi: 10.1007/s00033-014-0415-8.  Google Scholar

[18]

G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 12 (1988), 83.   Google Scholar

[19]

G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 13 (1989), 105.  doi: 10.2307/2152750.  Google Scholar

[20]

G. Lukaszewicz, Micropolar Fluids, Theory and Applications,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[21]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions,, Abstr. Appl. Anal., 4 (1999), 109.  doi: 10.1155/S1085337599000287.  Google Scholar

[22]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[23]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[24]

C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamics equations,, J. Differential Equations, 254 (2013), 4194.  doi: 10.1016/j.jde.2013.02.016.  Google Scholar

[25]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations,, Bound. Value Probl., 2013 (2013).  doi: 10.1186/1687-2770-2013-58.  Google Scholar

[26]

J. Wu, The generalized MHD equations,, J. Differential Equations, 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[27]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

[28]

Z. Xiang and H. Yang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative,, Bound. Value Probl., 139 (2012).  doi: 10.1186/1687-2770-2012-139.  Google Scholar

[29]

L. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations,, Math. Methods Appl. Sci., 34 (2011), 1760.  doi: 10.1002/mma.1491.  Google Scholar

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Math. Meth. Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[31]

K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation,, Nonliear Anal., 94 (2014), 194.  doi: 10.1016/j.na.2013.08.020.  Google Scholar

[32]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity,, Appl. Math. Lett., 29 (2014), 46.  doi: 10.1016/j.aml.2013.10.014.  Google Scholar

[33]

K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system,, J. Math. Anal. Appl., 416 (2014), 99.  doi: 10.1016/j.jmaa.2014.02.027.  Google Scholar

[34]

K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system,, Appl. Math., ().   Google Scholar

[35]

K. Yamazaki, $(N-1)$ velocity components condition for the generalized MHD system in $N$-dimension,, Kinet. Relat. Models, 7 (2014), 779.   Google Scholar

[36]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[37]

B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space,, Proc. Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[38]

B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations,, J. Math. Anal. Appl., 413 (2014), 633.  doi: 10.1016/j.jmaa.2013.12.024.  Google Scholar

[39]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,, Math. Meth. Appl. Sci., 31 (2008), 1113.  doi: 10.1002/mma.967.  Google Scholar

show all references

References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions,, Int. J. Engng. Sci., 12 (1974), 657.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[4]

C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion,, SIAM J. Math. Anal., 46 (2014), 588.  doi: 10.1137/130937718.  Google Scholar

[5]

M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 929.  doi: 10.1016/S0252-9602(13)60051-X.  Google Scholar

[6]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[7]

J.-Y. Chemin, Perfect Incompressible Fluids,, Clarendon Press, (1998).   Google Scholar

[8]

B.-Q. Dong and Z.-M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3245862.  Google Scholar

[9]

B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows,, Discrete Contin. Dyn. Syst., 23 (2009), 765.  doi: 10.3934/dcds.2009.23.765.  Google Scholar

[10]

B.Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Methods Appl. Sci., 34 (2011), 595.  doi: 10.1002/mma.1383.  Google Scholar

[11]

B.-Q. Dong and W. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.  doi: 10.1016/j.na.2010.06.029.  Google Scholar

[12]

B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity,, J. Differential Equations, 249 (2010), 200.  doi: 10.1016/j.jde.2010.03.016.  Google Scholar

[13]

A. C. Eringen, Simple microfluids,, Int. Engng. Sci., 2 (1964), 205.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[14]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[15]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Engng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[16]

H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation,, in Discrete and continuous dynamical systems, (2002), 439.   Google Scholar

[17]

Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion,, Z. Angew. Math. Phys., (2014), 1.  doi: 10.1007/s00033-014-0415-8.  Google Scholar

[18]

G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 12 (1988), 83.   Google Scholar

[19]

G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 13 (1989), 105.  doi: 10.2307/2152750.  Google Scholar

[20]

G. Lukaszewicz, Micropolar Fluids, Theory and Applications,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[21]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions,, Abstr. Appl. Anal., 4 (1999), 109.  doi: 10.1155/S1085337599000287.  Google Scholar

[22]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[23]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[24]

C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamics equations,, J. Differential Equations, 254 (2013), 4194.  doi: 10.1016/j.jde.2013.02.016.  Google Scholar

[25]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations,, Bound. Value Probl., 2013 (2013).  doi: 10.1186/1687-2770-2013-58.  Google Scholar

[26]

J. Wu, The generalized MHD equations,, J. Differential Equations, 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[27]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

[28]

Z. Xiang and H. Yang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative,, Bound. Value Probl., 139 (2012).  doi: 10.1186/1687-2770-2012-139.  Google Scholar

[29]

L. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations,, Math. Methods Appl. Sci., 34 (2011), 1760.  doi: 10.1002/mma.1491.  Google Scholar

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Math. Meth. Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[31]

K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation,, Nonliear Anal., 94 (2014), 194.  doi: 10.1016/j.na.2013.08.020.  Google Scholar

[32]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity,, Appl. Math. Lett., 29 (2014), 46.  doi: 10.1016/j.aml.2013.10.014.  Google Scholar

[33]

K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system,, J. Math. Anal. Appl., 416 (2014), 99.  doi: 10.1016/j.jmaa.2014.02.027.  Google Scholar

[34]

K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system,, Appl. Math., ().   Google Scholar

[35]

K. Yamazaki, $(N-1)$ velocity components condition for the generalized MHD system in $N$-dimension,, Kinet. Relat. Models, 7 (2014), 779.   Google Scholar

[36]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[37]

B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space,, Proc. Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[38]

B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations,, J. Math. Anal. Appl., 413 (2014), 633.  doi: 10.1016/j.jmaa.2013.12.024.  Google Scholar

[39]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,, Math. Meth. Appl. Sci., 31 (2008), 1113.  doi: 10.1002/mma.967.  Google Scholar

[1]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[2]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[3]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[4]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[5]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[6]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[7]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[8]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[9]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[13]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[14]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[17]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[18]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[19]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[20]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]