Citation: |
[1] |
A. Ambrosetti, V. Benci and Y. Long, A note on the existence of multiple brake orbits, Nonlinear Anal. T. M. A., 21 (1993), 643-649.doi: 10.1016/0362-546X(93)90061-V. |
[2] |
A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. I. H. P. Anal. non linéaire, 4 (1987), 275-296. |
[3] |
A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 255 (1981), 405-421.doi: 10.1007/BF01450713. |
[4] |
T. An and Y. Long, Index theories of second order Hamiltonian systems, Nonlinear Anal., 34 (1998), 585-592.doi: 10.1016/S0362-546X(97)00572-5. |
[5] |
V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. I. H. P. Analyse Nonl., 1 (1984), 401-412. |
[6] |
V. Benci and F. Giannoni, A new proof of the existence of a brake orbit. In "Advanced Topics in the Theory of Dynamical Systems", Notes Rep. Math. Sci. Eng., 6 (1989), 37-49. |
[7] |
S. Bolotin, Libration motions of natural dynamical systems, Vestnik Moskov Univ. Ser. I. Mat. Mekh., 6 (1978), 72-77 (in Russian). |
[8] |
S. Bolotin and V. V. Kozlov, Librations with many degrees of freedom, J. Appl. Math. Mech., 42 (1978), 245-250 (in Russian). |
[9] |
B. Booss and K. Furutani, The Maslov-type index - a functional analytical definition and the spectral flow formula, Tokyo J. Math., 21 (1998), 1-34.doi: 10.3836/tjm/1270041982. |
[10] |
B. Booss and C. Zhu, General spectral flow formula for fixed maximal domain, Central Eur. J. Math., 3 (2005), 558-577.doi: 10.2478/BF02475923. |
[11] |
S. E. Cappell, R. Lee and E. Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math., 47 (1994), 121-186.doi: 10.1002/cpa.3160470202. |
[12] |
C. Conley and E. Zehnder, Maslov-type index theory for flows and periodix solutions for Hamiltonian equations, Commu. Pure. Appl. Math., 37 (1984), 207-253.doi: 10.1002/cpa.3160370204. |
[13] |
D. Dong and Y. Long, The Iteration Theory of the Maslov-type Index Theory with Applications to Nonlinear Hamiltonian Systems, Trans. Amer. Math. Soc., 349 (1997), 2619-2661.doi: 10.1090/S0002-9947-97-01718-2. |
[14] |
J. J. Duistermaat, Fourier Integral Operators, Birkhäuser, Basel, 1996. |
[15] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Spring-Verlag. Berlin, 1990.doi: 10.1007/978-3-642-74331-3. |
[16] |
I. Ekeland and E. Hofer, Periodic solutions with percribed period for convex autonomous Hamiltonian systems, Invent. Math., 81 (1985), 155-188.doi: 10.1007/BF01388776. |
[17] |
G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal., 27 (1996), 811-820.doi: 10.1016/0362-546X(95)00077-9. |
[18] |
G. Fei, S.-K. Kim and T. Wang, Minimal Period Estimates of Period Solutions for Superquadratic Hamiltonian Syetems, J. Math. Anal. Appl., 238 (1999), 216-233.doi: 10.1006/jmaa.1999.6527. |
[19] |
G. Fei, S.-K. Kim and T. Wang, Solutions of minimal period for even classical Hamiltonian systems, Nonlinear Anal., 43 (2001), 363-375.doi: 10.1016/S0362-546X(99)00199-6. |
[20] |
M. Girardi and M. Matzeu, Some results on solutions of minimal period to superquadratic Hamiltonian equations, Nonlinear Anal., 7 (1983), 475-482.doi: 10.1016/0362-546X(83)90039-1. |
[21] |
M. M. Girardi and M. Matzeu, Solutions of minimal period for a class of nonconvex Hamiltonian systems and applications to the fixed energy problem, Nonlinear Anal. TMA., 10 (1986), 371-382.doi: 10.1016/0362-546X(86)90134-3. |
[22] |
M. Girardi and M. Matzeu, Periodic solutions of convex Hamiltonian systems with a quadratic growth at the origin and superquadratic at infinity, Ann. Math. Pura ed App., 147 (1987), 21-72.doi: 10.1007/BF01762410. |
[23] |
M. Girardi and M. Matzeu, Dual Morse index estimates for periodic solutions of Hamiltonian systems in some nonconvex superquadratic case, Nonlinear Anal. TMA., 17 (1991), 481-497.doi: 10.1016/0362-546X(91)90143-O. |
[24] |
H. Gluck and W. Ziller, Existence of periodic solutions of conservtive systems, Seminar on Minimal Submanifolds, Princeton University Press, (1983), 65-98. |
[25] |
E. W. C. van Groesen, Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl., 132 (1988), 1-12.doi: 10.1016/0022-247X(88)90039-X. |
[26] |
K. Hayashi, Periodic solution of classical Hamiltonian systems, Tokyo J. Math., 6 (1983), 473-486.doi: 10.3836/tjm/1270213886. |
[27] |
C. Liu, A note on the monotonicity of Maslov-type index of Linear Hamiltonian systems with applications, Proceedings of the royal Society of Edinburg, 135 (2005), 1263-1277.doi: 10.1017/S0308210500004364. |
[28] |
C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud., 7 (2007), 131-161. |
[29] |
C. Liu, Asymptotically linear hamiltonian systems with largrangian boundary conditions, Pacific J. Math., 232 (2007), 233-255.doi: 10.2140/pjm.2007.232.233. |
[30] |
C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst., 27 (2010), 337-355.doi: 10.3934/dcds.2010.27.337. |
[31] |
C. Liu and Y. Long, An optimal increasing estimate for iterated Maslov-type indices, Chinese Sci. Bull., 42 (1997), 2275-2277. |
[32] |
C. Liu and Y. Long, Iteration inequalities of the Maslov-type index theory with applications, J. Diff. Equa., 165 (2000), 355-376.doi: 10.1006/jdeq.2000.3775. |
[33] |
C. Liu and D. Zhang, An iteration theory of Maslov-type index for symplectic paths associated with a Lagranfian subspace and Multiplicity of brake orbits in bounded convex symmetric domains, arXiv:0908.0021 [math. SG]. |
[34] |
Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Science in China, Series A., 7 (1990), 673-682 (Chinese edition), 33 (1990), 1409-1419.(English edition) |
[35] |
Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. I. H. P. Anal. non linéaire, 10 (1993), 605-626. |
[36] |
Y. Long, The minimal period problem of period solutions for autonomous superquadratic second Hamiltonian systems, J. Diff. Equa., 111 (1994), 147-174.doi: 10.1006/jdeq.1994.1079. |
[37] |
Y. Long, On the minimal period for periodic solution problem of nonlinear Hamiltonian systems, Chinese Ann. of math., 18 (1997), 481-484. |
[38] |
Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.doi: 10.2140/pjm.1999.187.113. |
[39] |
Y. long, Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel, 2002.doi: 10.1007/978-3-0348-8175-3. |
[40] |
Y. Long, D. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Advances in Math., 203 (2006), 568-635.doi: 10.1016/j.aim.2005.05.005. |
[41] |
P. H. Rabinowitz, Periodic solution of Hamiltonian systems, Commu. Pure Appl. Math., 31 (1978), 157-184.doi: 10.1002/cpa.3160310203. |
[42] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., A.M.S., Providence, 45 (1986), 287-306. |
[43] |
P. H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian systems, Nonlinear Anal. T. M. A., 11 (1987), 599-611.doi: 10.1016/0362-546X(87)90075-7. |
[44] |
J. Robbin and D. Salamon, The Maslov indices for paths, Topology, 32 (1993), 827-844.doi: 10.1016/0040-9383(93)90052-W. |
[45] |
H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z., 51 (1948), 197-216.doi: 10.1007/BF01291002. |
[46] |
A. Szulkin, Cohomology and Morse theory for strongly indefinite functions, Math. Z., 209 (1992), 375-418.doi: 10.1007/BF02570842. |
[47] |
Y. Xiao, Periodic Solutions with Prescribed Minimal Period for Second Order Hamiltonian Systems with Even Potentials, Acta Math. Sinica, English Series, 26 (2010), 825-830.doi: 10.1007/s10114-009-8305-2. |
[48] |
D. Zhang, Symmetric period solutions with prescribed period for even autonomous semipositive hamiltonian systems, Sci. China Math., 57 (2014), 81-96.doi: 10.1007/s11425-013-4598-9. |
[49] |
D. Zhang, Maslov-type index and brake orbits in nonlinear Hamiltonian systems, Science in China, 50 (2007), 761-772.doi: 10.1007/s11425-007-0034-3. |
[50] |
C. Zhu and Y. Long, Maslov index theory for symplectic paths and spectral flow(I), Chinese Ann. of Math., 20 (1999), 413-424.doi: 10.1142/S0252959999000485. |