• Previous Article
    Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source
  • DCDS Home
  • This Issue
  • Next Article
    Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems
May  2015, 35(5): 2273-2298. doi: 10.3934/dcds.2015.35.2273

Dynamics of hyperbolic meromorphic functions

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, China

Received  October 2010 Revised  June 2014 Published  December 2014

A definition of hyperbolic meromorphic functions is given and then we discuss the dynamical behavior and the thermodynamic formalism of hyperbolic functions on their Julia sets. We prove the important expanding properties for hyperbolic functions on the complex plane or with respect to the Euclidean metric. We establish the Bowen formula for hyperbolic functions on the complex plane, that is, the Poincare exponent equals to the Hausdorff dimension of the radial Julia set and furthermore, we prove that all the results in the Walters' theory hold for hyperbolic functions on the Riemann sphere.
Citation: Jian-Hua Zheng. Dynamics of hyperbolic meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2273-2298. doi: 10.3934/dcds.2015.35.2273
References:
[1]

I. N. Baker and P. Dominguez, Boundaries of unbounded Fatou components of entire functions,, Ann. Acad. Sci. Fenn., 24 (1999), 437.   Google Scholar

[2]

K. Baranski, Hausdorff dimension and measures on Julia sets of some meromorphic functions,, Fund. Math., 147 (1995), 239.   Google Scholar

[3]

W. Bergweiler and A. Eremenko, Meromorphic functions with two completely invariant domains, in Transcendental Dynamics and Complex Analysis,, edited by P. J. Rippon & G. M. Stallard, 348 (2008), 74.  doi: 10.1017/CBO9780511735233.005.  Google Scholar

[4]

W. Bergweiler, M. Haruta, H. Kriete. H. G. Meier and N. Terglane, On the limit functions of iterates in wandering domains,, Ann. Acad. Sci. Fenn., 18 (1993), 369.   Google Scholar

[5]

W. Bergweiler, P. J. Rippon and G. M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities,, Proc. London Math. Soc., 97 (2008), 368.  doi: 10.1112/plms/pdn007.  Google Scholar

[6]

R. L. Devaney and L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative,, Ann. Scient. Éc. Norm. Sup., 22 (1989), 55.   Google Scholar

[7]

P. Dominguez, Dynamics of transcendental meromorphic functions,, Ann. Acad. Sci. Fenn., 23 (1998), 225.   Google Scholar

[8]

K. Falconer, Fractal Geometry,, John Wiley & Sons, (1999).  doi: 10.1002/0470013850.  Google Scholar

[9]

W. K. Hayman, On Iversen's Theorem for meromorphic functions with few poles,, Acta Mathematica, 141 (1978), 115.  doi: 10.1007/BF02545745.  Google Scholar

[10]

F. Iversen, Recherches sur les Fonctions Inverses des Fonctons Méromorphes,, Thése de Helsingfors, (1914).   Google Scholar

[11]

J. Kotus and M. Urbanski, Conformal, geometric and invariant measures for transcendental expanding functions,, Math. Ann., 324 (2002), 619.  doi: 10.1007/s00208-002-0356-y.  Google Scholar

[12]

J. Kotus and M. Urbanski, Hausdorff dimension of radial and escaping points for transcendental meromorphic functions,, Illinois J. Math., 52 (2008), 1035.   Google Scholar

[13]

V. Mayer and M. Urbański, Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order,, Memoirs of AMS, 203 (2010).  doi: 10.1090/S0065-9266-09-00577-8.  Google Scholar

[14]

C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Trans. Amer. Math. Soc., 300 (1987), 329.  doi: 10.1090/S0002-9947-1987-0871679-3.  Google Scholar

[15]

C. McMullen, In holomorphic functions and moduli I,, Springer-Verlag, 10 (1988), 31.  doi: 10.1007/978-1-4613-9602-4_3.  Google Scholar

[16]

J. K. Moser, Stable And Random Motions In Dynamical Systems,, Princeton: Princeton University Press, (1973).   Google Scholar

[17]

T. W. Ng, J. H. Zheng and K. Choi, Residual Julia sets of meromorphic functions,, Math. Proc. Cambridge Phil. Soc., 141 (2006), 113.  doi: 10.1017/S0305004106009388.  Google Scholar

[18]

K. Pilgrim and L. Tan, Rational maps with disconnected Julia set,, Géométrie complexe et systèmes dynamiques (Orsay, 261 (2000), 349.   Google Scholar

[19]

P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions,, Proc. Amer. Math. Soc., 127 (1999), 3251.  doi: 10.1090/S0002-9939-99-04942-4.  Google Scholar

[20]

D. Ruelle, Repellers for real analytic maps,, Ergodic Th. Dyn. Sys., 2 (1982), 99.  doi: 10.1017/S0143385700009603.  Google Scholar

[21]

G. M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions,, J. London Math. soc., 49 (1994), 281.  doi: 10.1112/jlms/49.2.281.  Google Scholar

[22]

G. M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions II,, J. London Math. soc., 60 (1999), 847.  doi: 10.1112/S0024610799008029.  Google Scholar

[23]

G. M. Stallard, Dimension of Julia sets of hyperbolic meromorphic functions,, Math. Proc. Camb. Phil. Soc., 127 (1999), 271.  doi: 10.1017/S0305004199003813.  Google Scholar

[24]

G. M. Stallard, The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions,, Ergodic Theory Dynam. Systems, 20 (2000), 895.  doi: 10.1017/S0143385700000481.  Google Scholar

[25]

G. M. Stallard, Meromorphic functions whose Julia sets contain a free Jordan arc,, Ann. Acad. Sci. Fenn., 18 (1993), 273.   Google Scholar

[26]

N. Steinmetz, Rational Iterations,, Berlin: Walter de Gruyter, (1993).  doi: 10.1515/9783110889314.  Google Scholar

[27]

D. Sullivan, Conformal dynamical systems: In Geometric dynamics,, Lecture Notes in Math., 1007 (1983), 725.  doi: 10.1007/BFb0061443.  Google Scholar

[28]

O. Teichmüller, Eine Umkehrung des zweiten Hauptsatzes der Wertverteilungstheorie,, Deutsche Math., 2 (1937), 96.   Google Scholar

[29]

L. A. Ter-Israelyan, Meromorphic functions of zero order with non-asymptotic deficient values,, Math. Zam., 13 (1973), 195.   Google Scholar

[30]

P. Walters, Invariant measures and equilibrium states for some mappings which expand distances,, Trans. Amer. Math. Soc., 236 (1978), 121.  doi: 10.1090/S0002-9947-1978-0466493-1.  Google Scholar

[31]

M. Urbanski and A. Zdunik, The finer geometry and dynamics of exponential family,, Michingan Math. J., 51 (2003), 227.  doi: 10.1307/mmj/1060013195.  Google Scholar

[32]

M. Urbanski and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family,, Ergodic Th. and Dynam. Sys., 24 (2004), 279.  doi: 10.1017/S0143385703000208.  Google Scholar

[33]

J. H. Zheng, Singularties and limit functions in iteration of meromorphic functions,, J. London Math. Soc., 67 (2003), 195.  doi: 10.1112/S0024610702003800.  Google Scholar

[34]

J. H. Zheng, On transcendental meromorphic functions which are geometrically finite,, J. Austral. Math. Soc., 72 (2002), 93.  doi: 10.1017/S144678870000361X.  Google Scholar

[35]

J. H. Zheng, Dynamics Of Meromorphic Functions, Monograph of Tsinghua University,, Tsinghua University Press, (2006).   Google Scholar

show all references

References:
[1]

I. N. Baker and P. Dominguez, Boundaries of unbounded Fatou components of entire functions,, Ann. Acad. Sci. Fenn., 24 (1999), 437.   Google Scholar

[2]

K. Baranski, Hausdorff dimension and measures on Julia sets of some meromorphic functions,, Fund. Math., 147 (1995), 239.   Google Scholar

[3]

W. Bergweiler and A. Eremenko, Meromorphic functions with two completely invariant domains, in Transcendental Dynamics and Complex Analysis,, edited by P. J. Rippon & G. M. Stallard, 348 (2008), 74.  doi: 10.1017/CBO9780511735233.005.  Google Scholar

[4]

W. Bergweiler, M. Haruta, H. Kriete. H. G. Meier and N. Terglane, On the limit functions of iterates in wandering domains,, Ann. Acad. Sci. Fenn., 18 (1993), 369.   Google Scholar

[5]

W. Bergweiler, P. J. Rippon and G. M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities,, Proc. London Math. Soc., 97 (2008), 368.  doi: 10.1112/plms/pdn007.  Google Scholar

[6]

R. L. Devaney and L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative,, Ann. Scient. Éc. Norm. Sup., 22 (1989), 55.   Google Scholar

[7]

P. Dominguez, Dynamics of transcendental meromorphic functions,, Ann. Acad. Sci. Fenn., 23 (1998), 225.   Google Scholar

[8]

K. Falconer, Fractal Geometry,, John Wiley & Sons, (1999).  doi: 10.1002/0470013850.  Google Scholar

[9]

W. K. Hayman, On Iversen's Theorem for meromorphic functions with few poles,, Acta Mathematica, 141 (1978), 115.  doi: 10.1007/BF02545745.  Google Scholar

[10]

F. Iversen, Recherches sur les Fonctions Inverses des Fonctons Méromorphes,, Thése de Helsingfors, (1914).   Google Scholar

[11]

J. Kotus and M. Urbanski, Conformal, geometric and invariant measures for transcendental expanding functions,, Math. Ann., 324 (2002), 619.  doi: 10.1007/s00208-002-0356-y.  Google Scholar

[12]

J. Kotus and M. Urbanski, Hausdorff dimension of radial and escaping points for transcendental meromorphic functions,, Illinois J. Math., 52 (2008), 1035.   Google Scholar

[13]

V. Mayer and M. Urbański, Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order,, Memoirs of AMS, 203 (2010).  doi: 10.1090/S0065-9266-09-00577-8.  Google Scholar

[14]

C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Trans. Amer. Math. Soc., 300 (1987), 329.  doi: 10.1090/S0002-9947-1987-0871679-3.  Google Scholar

[15]

C. McMullen, In holomorphic functions and moduli I,, Springer-Verlag, 10 (1988), 31.  doi: 10.1007/978-1-4613-9602-4_3.  Google Scholar

[16]

J. K. Moser, Stable And Random Motions In Dynamical Systems,, Princeton: Princeton University Press, (1973).   Google Scholar

[17]

T. W. Ng, J. H. Zheng and K. Choi, Residual Julia sets of meromorphic functions,, Math. Proc. Cambridge Phil. Soc., 141 (2006), 113.  doi: 10.1017/S0305004106009388.  Google Scholar

[18]

K. Pilgrim and L. Tan, Rational maps with disconnected Julia set,, Géométrie complexe et systèmes dynamiques (Orsay, 261 (2000), 349.   Google Scholar

[19]

P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions,, Proc. Amer. Math. Soc., 127 (1999), 3251.  doi: 10.1090/S0002-9939-99-04942-4.  Google Scholar

[20]

D. Ruelle, Repellers for real analytic maps,, Ergodic Th. Dyn. Sys., 2 (1982), 99.  doi: 10.1017/S0143385700009603.  Google Scholar

[21]

G. M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions,, J. London Math. soc., 49 (1994), 281.  doi: 10.1112/jlms/49.2.281.  Google Scholar

[22]

G. M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions II,, J. London Math. soc., 60 (1999), 847.  doi: 10.1112/S0024610799008029.  Google Scholar

[23]

G. M. Stallard, Dimension of Julia sets of hyperbolic meromorphic functions,, Math. Proc. Camb. Phil. Soc., 127 (1999), 271.  doi: 10.1017/S0305004199003813.  Google Scholar

[24]

G. M. Stallard, The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions,, Ergodic Theory Dynam. Systems, 20 (2000), 895.  doi: 10.1017/S0143385700000481.  Google Scholar

[25]

G. M. Stallard, Meromorphic functions whose Julia sets contain a free Jordan arc,, Ann. Acad. Sci. Fenn., 18 (1993), 273.   Google Scholar

[26]

N. Steinmetz, Rational Iterations,, Berlin: Walter de Gruyter, (1993).  doi: 10.1515/9783110889314.  Google Scholar

[27]

D. Sullivan, Conformal dynamical systems: In Geometric dynamics,, Lecture Notes in Math., 1007 (1983), 725.  doi: 10.1007/BFb0061443.  Google Scholar

[28]

O. Teichmüller, Eine Umkehrung des zweiten Hauptsatzes der Wertverteilungstheorie,, Deutsche Math., 2 (1937), 96.   Google Scholar

[29]

L. A. Ter-Israelyan, Meromorphic functions of zero order with non-asymptotic deficient values,, Math. Zam., 13 (1973), 195.   Google Scholar

[30]

P. Walters, Invariant measures and equilibrium states for some mappings which expand distances,, Trans. Amer. Math. Soc., 236 (1978), 121.  doi: 10.1090/S0002-9947-1978-0466493-1.  Google Scholar

[31]

M. Urbanski and A. Zdunik, The finer geometry and dynamics of exponential family,, Michingan Math. J., 51 (2003), 227.  doi: 10.1307/mmj/1060013195.  Google Scholar

[32]

M. Urbanski and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family,, Ergodic Th. and Dynam. Sys., 24 (2004), 279.  doi: 10.1017/S0143385703000208.  Google Scholar

[33]

J. H. Zheng, Singularties and limit functions in iteration of meromorphic functions,, J. London Math. Soc., 67 (2003), 195.  doi: 10.1112/S0024610702003800.  Google Scholar

[34]

J. H. Zheng, On transcendental meromorphic functions which are geometrically finite,, J. Austral. Math. Soc., 72 (2002), 93.  doi: 10.1017/S144678870000361X.  Google Scholar

[35]

J. H. Zheng, Dynamics Of Meromorphic Functions, Monograph of Tsinghua University,, Tsinghua University Press, (2006).   Google Scholar

[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[3]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[4]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[5]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[8]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[11]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[14]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[15]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[16]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[19]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[20]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]