June  2015, 35(6): 2325-2347. doi: 10.3934/dcds.2015.35.2325

Numerical simulation of two-phase flows with heat and mass transfer

1. 

AM III, Department Math, Cauerstr. 11 91058 Erlangen, Germany, Germany

2. 

Reinbeckstrasse 7, 12459 Berlin, Germany

Received  January 2014 Revised  May 2014 Published  December 2014

We present a finite element method for simulating complex free surface flow. The mathematical model and the numerical method take into account two-phase non-isothermal flow of an incompressible liquid and a gas phase, capillary forces at the interface of both fluids, Marangoni effects due to temperature variation of the interface and mass transport across the interface by evaporation/condensation. The method is applied to two examples from microgravity research, for which experimental data are available.
Citation: Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325
References:
[1]

E. Bänsch, Simulation of instationary, incompressible flows, Acta Math. Univ. Com., 67 (1998), 101-114.

[2]

E. Bänsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math., 88 (2001), 203-235. doi: 10.1007/PL00005443.

[3]

J. Brackbill, D. Kothe and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, 100 (1992), 335-354. doi: 10.1016/0021-9991(92)90240-Y.

[4]

M.-O. Bristeau, R. Glowinski and J. Pariaux, Numerical methods for the Navier-Stokes equations. applications to the simulation of compressible and incompressible viscous flow, Computer Physics Report, 6 (1987), 73-187. doi: 10.1007/978-3-322-87873-1.

[5]

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32 (1982), 199-259, URL http://www.sciencedirect.com/science/article/pii/0045782582900718. doi: 10.1016/0045-7825(82)90071-8.

[6]

S. Das and E. Hopfinger, Mass transfer enhancement by gravity waves at a liquid-vapour interface, International Journal of Heat and Mass Transfer, 52 (2009), 1400-1411, URL http://www.sciencedirect.com/science/article/pii/S0017931008005176. doi: 10.1016/j.ijheatmasstransfer.2008.08.016.

[7]

J. Donea, S. Giuliani and J. P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comp. Meth. App. MechEng., 33 (1982), 689-723. doi: 10.1016/0045-7825(82)90128-1.

[8]

M. E. Dreyer, Free Surface Flows under Compensated Gravity Conditions, no. 221 in Springer Tracts in Modern Physics, Springer, 2007.

[9]

G. Dziuk, An algorithm for evolutionary surfaces, Numerische Mathematik, 58 (1991), 603-611. doi: 10.1007/BF01385643.

[10]

C. Eck, M. Fontelos, G. Grün, F. Klingbeil and O. Vantzos, On a phase-field model for electrowetting, Interfaces Free Bound., 11 (2009), 259-290. doi: 10.4171/IFB/211.

[11]

E. Fuhrmann and M. Dreyer, Description of the Sounding Rocket Experiment SOURCE, Microgravity Science and Technology, 20 (2008), 205-212. doi: 10.1007/s12217-008-9017-4.

[12]

E. Fuhrmann and M. Dreyer, Heat transfer by thermo-capillary convection, Microgravity Science and Technology, 21 (2009), 87-93. doi: 10.1007/s12217-009-9125-9.

[13]

E. Fuhrmann, M. Dreyer, S. Basting and E. Bänsch, Free surface deformation and heat transfer by thermocapillary convection, 2013, Submitted for publication.

[14]

J. Gerstmann, Numerische Untersuchung zur Schwingung freier Flüssigkeitsoberflächen, no. 464 in Fortschritt-Berichte VDI, Reihe 7: Strömungsmechanik, VDI-Verlag, Düsseldorf, 2004.

[15]

J. Gerstmann, M. Michaelis and M. E. Dreyer, Capillary driven oscillations of a free liquid interface under non-isothermal conditions, PAMM, 4 (2004), 436-437. doi: 10.1002/pamm.200410199.

[16]

F. Gibou, L. Chen, D. Nguyen and S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change, J. Comp. Phys., 222 (2007), 536-555. doi: 10.1016/j.jcp.2006.07.035.

[17]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, 1986. doi: 10.1007/978-3-642-61623-5.

[18]

S. Gross and A. Reusken, Numerical Methods for Two-phase Incompressible Flows, vol. 40 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-19686-7.

[19]

M. E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1981.

[20]

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys., 39 (1981), 201-225. doi: 10.1016/0021-9991(81)90145-5.

[21]

C. Hirt, A. Amsden and J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of Computational Physics, 135 (1997), 203-216. doi: 10.1006/jcph.1997.5702.

[22]

B. Höhn, Numerik für die Marangoni-Konvektion beim Floating-Zone Verfahren, Dissertation, Albert-Ludwigs-Universität Freiburg i.Br., Mathematische Fakultät, 1999.

[23]

T. J. R. Hughes, W. Liu and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, 29 (1981), 329-349. doi: 10.1016/0045-7825(81)90049-9.

[24]

D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comp. Phys., 155 (1999), 96-127. doi: 10.1006/jcph.1999.6332.

[25]

D. Jamet, O. Lebaigue, N. Coutris and J. M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comp. Phys, 169 (2001), 624-651. doi: 10.1006/jcph.2000.6692.

[26]

E. Kennard, Kinetic theory of gases: with an introduction to statistical mechanics, International series in pure and applied physics, McGraw-Hill, 1938.

[27]

R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics, Eng. Math., 39 (2001), 261-343. doi: 10.1023/A:1004844002437.

[28]

R. Krahl, M. Adamov, M. Lozano Avilés and E. Bänsch, A model for two phase flow with evaporation, in Two-Phase Flow Modelling and Experimentation 2004 (eds. G. P. Celata, P. Di Marco, A. Mariani and R. K. Shah), vol. 4, Edizioni ETS, Pisa, 2004, 2381-2387.

[29]

R. Krahl, J. Gerstmann, P. Behruzi, E. Bänsch and M. E. Dreyer, Dependency of the apparent contact angle on nonisothermal conditions, Physics of Fluids, 20 (2008), 042101. doi: 10.1063/1.2899641.

[30]

R. Krahl and E. Bänsch, Impact of marangoni effects on the apparent contact angle - a numerical investigation, Microgravity Science and Technology, 17 (2005), 39-44. doi: 10.1007/BF02872086.

[31]

R. Krahl and E. Bänsch, On the stability of an evaporating liquid surface, Fluid Dynamics Research, 44 (2012), 031409. doi: 10.1088/0169-5983/44/3/031409.

[32]

R. Krahl and J. Gerstmann, Non-isothermal reorientation of a liquid surface in an annular gap, in $4^{th}$ International Berlin Workshop - IBW 4 on Transport Phenomena with Moving Boundaries (ed. F.-P. Schindler), no. 883 in Fortschritt-Berichte VDI, Reihe 3: Verfahrenstechnik, VDI-Verlag, Düsseldorf, (2007), 227-241.

[33]

N. Kulev, S. Basting, E. Bänsch and M. Dreyer, Interface reorientation of cryogenic liquids under non-isothermal boundary conditions, Cryogenics, 62 (2014), 48-59, URL http://www.sciencedirect.com/science/article/pii/S0011227514000794. doi: 10.1016/j.cryogenics.2014.04.006.

[34]

N. Kulev and M. Dreyer, Drop tower experiments on non-isothermal reorientation of cryogenic liquids, Microgravity Science and Technology, 22 (2010), 463-474. doi: 10.1007/s12217-010-9237-2.

[35]

D. Meschede (ed.), Gerthsen Physik, 22nd edition, Springer, 2004.

[36]

M. Michaelis, Kapillarinduzierte Schwingungen Freier Flüssigkeitsoberflächen, no. 454 in Fortschritt-Berichte VDI, Reihe 7: Strömungsmechanik, VDI-Verlag, Düsseldorf, 2003.

[37]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.

[38]

S. Ostrach, Low-gravity fluid flows, Ann. Rev. Fluid. Mech., 14 (1982), 313-345. doi: 10.1146/annurev.fl.14.010182.001525.

[39]

L. M. Pismen and Y. Pomeau, Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics, Phys. Rev. E, 62 (2000), 2480-2492. doi: 10.1103/PhysRevE.62.2480.

[40]

M. Rumpf, A variational approach to optimal meshes, Numerische Mathematik, 72 (1996), 523-540. doi: 10.1007/s002110050180.

[41]

Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Sci. Comp., 7 (1986), 856-869. doi: 10.1137/0907058.

[42]

R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Ann. Rev. Fluid Mech., 31 (1999), 567-603. doi: 10.1146/annurev.fluid.31.1.567.

[43]

J. Schlottke and B. Weigand, Direct numerical simulation of evaporating droplets, J. Comp. Phys., 227 (2008), 5215-5237. doi: 10.1016/j.jcp.2008.01.042.

[44]

L. E. Scriven, Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chem. Eng. Sci., 12 (1960), 98-108. doi: 10.1016/0009-2509(60)87003-0.

[45]

J. A. Sethian and P. Smereka, Level set methods for fluid interfaces, Ann. Rev. Fluid Mech., 35 (2003), 341-372. doi: 10.1146/annurev.fluid.35.101101.161105.

[46]

G. Son and V. K. Dhir, Numerical simulation of film boiling near critical pressures with a level set method, J. Heat Transfer, 120 (1998), 183-192. doi: 10.1115/1.2830042.

[47]

M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, 114 (1994), 146-159. doi: 10.1006/jcph.1994.1155.

[48]

S. Tanguy, T. Ménard and A. Berlemont, A level set method for vaporizing two-phase flows, J. Comp. Phys., 221 (2007), 837-853. doi: 10.1016/j.jcp.2006.07.003.

[49]

M. Tenhaeff, Computation of Incompressible, Axisymmetric Flows in Electrically Conducting Fluids Under Influence of Rotating Magnetic Fields (in German), Diploma thesis, Albert-Ludwigs-Universität Freiburg i.Br., Mathematische Fakultät, 1997.

[50]

T. Tezduyar and R. Benney, Mesh moving techniques for fluid-structure interactions with large displacements, J. Applied Mechanics, 70 (2003), 58-63.

[51]

S. W. J. Welch and J. Wilson, A volume of fluid based method for fluid flows with phase change, J. Comp. Phys, 160 (2000), 662-682. doi: 10.1006/jcph.2000.6481.

[52]

T. Wick, Fluid-structure interactions using different mesh motion techniques, Computers & Structures, 89 (2011), 1456-1467. doi: 10.1016/j.compstruc.2011.02.019.

[53]

Y. F. Yap, J. C. Chai, K. C. Toh, T. N. Wong and Y. C. Lam, Numerical modeling of unidirectional stratified flow with and without phase change, J. Int. Heat Mass Transfer, 48 (2005), 477-486. doi: 10.1016/j.ijheatmasstransfer.2004.09.017.

show all references

References:
[1]

E. Bänsch, Simulation of instationary, incompressible flows, Acta Math. Univ. Com., 67 (1998), 101-114.

[2]

E. Bänsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math., 88 (2001), 203-235. doi: 10.1007/PL00005443.

[3]

J. Brackbill, D. Kothe and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, 100 (1992), 335-354. doi: 10.1016/0021-9991(92)90240-Y.

[4]

M.-O. Bristeau, R. Glowinski and J. Pariaux, Numerical methods for the Navier-Stokes equations. applications to the simulation of compressible and incompressible viscous flow, Computer Physics Report, 6 (1987), 73-187. doi: 10.1007/978-3-322-87873-1.

[5]

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32 (1982), 199-259, URL http://www.sciencedirect.com/science/article/pii/0045782582900718. doi: 10.1016/0045-7825(82)90071-8.

[6]

S. Das and E. Hopfinger, Mass transfer enhancement by gravity waves at a liquid-vapour interface, International Journal of Heat and Mass Transfer, 52 (2009), 1400-1411, URL http://www.sciencedirect.com/science/article/pii/S0017931008005176. doi: 10.1016/j.ijheatmasstransfer.2008.08.016.

[7]

J. Donea, S. Giuliani and J. P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comp. Meth. App. MechEng., 33 (1982), 689-723. doi: 10.1016/0045-7825(82)90128-1.

[8]

M. E. Dreyer, Free Surface Flows under Compensated Gravity Conditions, no. 221 in Springer Tracts in Modern Physics, Springer, 2007.

[9]

G. Dziuk, An algorithm for evolutionary surfaces, Numerische Mathematik, 58 (1991), 603-611. doi: 10.1007/BF01385643.

[10]

C. Eck, M. Fontelos, G. Grün, F. Klingbeil and O. Vantzos, On a phase-field model for electrowetting, Interfaces Free Bound., 11 (2009), 259-290. doi: 10.4171/IFB/211.

[11]

E. Fuhrmann and M. Dreyer, Description of the Sounding Rocket Experiment SOURCE, Microgravity Science and Technology, 20 (2008), 205-212. doi: 10.1007/s12217-008-9017-4.

[12]

E. Fuhrmann and M. Dreyer, Heat transfer by thermo-capillary convection, Microgravity Science and Technology, 21 (2009), 87-93. doi: 10.1007/s12217-009-9125-9.

[13]

E. Fuhrmann, M. Dreyer, S. Basting and E. Bänsch, Free surface deformation and heat transfer by thermocapillary convection, 2013, Submitted for publication.

[14]

J. Gerstmann, Numerische Untersuchung zur Schwingung freier Flüssigkeitsoberflächen, no. 464 in Fortschritt-Berichte VDI, Reihe 7: Strömungsmechanik, VDI-Verlag, Düsseldorf, 2004.

[15]

J. Gerstmann, M. Michaelis and M. E. Dreyer, Capillary driven oscillations of a free liquid interface under non-isothermal conditions, PAMM, 4 (2004), 436-437. doi: 10.1002/pamm.200410199.

[16]

F. Gibou, L. Chen, D. Nguyen and S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change, J. Comp. Phys., 222 (2007), 536-555. doi: 10.1016/j.jcp.2006.07.035.

[17]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, 1986. doi: 10.1007/978-3-642-61623-5.

[18]

S. Gross and A. Reusken, Numerical Methods for Two-phase Incompressible Flows, vol. 40 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-19686-7.

[19]

M. E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1981.

[20]

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys., 39 (1981), 201-225. doi: 10.1016/0021-9991(81)90145-5.

[21]

C. Hirt, A. Amsden and J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of Computational Physics, 135 (1997), 203-216. doi: 10.1006/jcph.1997.5702.

[22]

B. Höhn, Numerik für die Marangoni-Konvektion beim Floating-Zone Verfahren, Dissertation, Albert-Ludwigs-Universität Freiburg i.Br., Mathematische Fakultät, 1999.

[23]

T. J. R. Hughes, W. Liu and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, 29 (1981), 329-349. doi: 10.1016/0045-7825(81)90049-9.

[24]

D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comp. Phys., 155 (1999), 96-127. doi: 10.1006/jcph.1999.6332.

[25]

D. Jamet, O. Lebaigue, N. Coutris and J. M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comp. Phys, 169 (2001), 624-651. doi: 10.1006/jcph.2000.6692.

[26]

E. Kennard, Kinetic theory of gases: with an introduction to statistical mechanics, International series in pure and applied physics, McGraw-Hill, 1938.

[27]

R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics, Eng. Math., 39 (2001), 261-343. doi: 10.1023/A:1004844002437.

[28]

R. Krahl, M. Adamov, M. Lozano Avilés and E. Bänsch, A model for two phase flow with evaporation, in Two-Phase Flow Modelling and Experimentation 2004 (eds. G. P. Celata, P. Di Marco, A. Mariani and R. K. Shah), vol. 4, Edizioni ETS, Pisa, 2004, 2381-2387.

[29]

R. Krahl, J. Gerstmann, P. Behruzi, E. Bänsch and M. E. Dreyer, Dependency of the apparent contact angle on nonisothermal conditions, Physics of Fluids, 20 (2008), 042101. doi: 10.1063/1.2899641.

[30]

R. Krahl and E. Bänsch, Impact of marangoni effects on the apparent contact angle - a numerical investigation, Microgravity Science and Technology, 17 (2005), 39-44. doi: 10.1007/BF02872086.

[31]

R. Krahl and E. Bänsch, On the stability of an evaporating liquid surface, Fluid Dynamics Research, 44 (2012), 031409. doi: 10.1088/0169-5983/44/3/031409.

[32]

R. Krahl and J. Gerstmann, Non-isothermal reorientation of a liquid surface in an annular gap, in $4^{th}$ International Berlin Workshop - IBW 4 on Transport Phenomena with Moving Boundaries (ed. F.-P. Schindler), no. 883 in Fortschritt-Berichte VDI, Reihe 3: Verfahrenstechnik, VDI-Verlag, Düsseldorf, (2007), 227-241.

[33]

N. Kulev, S. Basting, E. Bänsch and M. Dreyer, Interface reorientation of cryogenic liquids under non-isothermal boundary conditions, Cryogenics, 62 (2014), 48-59, URL http://www.sciencedirect.com/science/article/pii/S0011227514000794. doi: 10.1016/j.cryogenics.2014.04.006.

[34]

N. Kulev and M. Dreyer, Drop tower experiments on non-isothermal reorientation of cryogenic liquids, Microgravity Science and Technology, 22 (2010), 463-474. doi: 10.1007/s12217-010-9237-2.

[35]

D. Meschede (ed.), Gerthsen Physik, 22nd edition, Springer, 2004.

[36]

M. Michaelis, Kapillarinduzierte Schwingungen Freier Flüssigkeitsoberflächen, no. 454 in Fortschritt-Berichte VDI, Reihe 7: Strömungsmechanik, VDI-Verlag, Düsseldorf, 2003.

[37]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.

[38]

S. Ostrach, Low-gravity fluid flows, Ann. Rev. Fluid. Mech., 14 (1982), 313-345. doi: 10.1146/annurev.fl.14.010182.001525.

[39]

L. M. Pismen and Y. Pomeau, Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics, Phys. Rev. E, 62 (2000), 2480-2492. doi: 10.1103/PhysRevE.62.2480.

[40]

M. Rumpf, A variational approach to optimal meshes, Numerische Mathematik, 72 (1996), 523-540. doi: 10.1007/s002110050180.

[41]

Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Sci. Comp., 7 (1986), 856-869. doi: 10.1137/0907058.

[42]

R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Ann. Rev. Fluid Mech., 31 (1999), 567-603. doi: 10.1146/annurev.fluid.31.1.567.

[43]

J. Schlottke and B. Weigand, Direct numerical simulation of evaporating droplets, J. Comp. Phys., 227 (2008), 5215-5237. doi: 10.1016/j.jcp.2008.01.042.

[44]

L. E. Scriven, Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chem. Eng. Sci., 12 (1960), 98-108. doi: 10.1016/0009-2509(60)87003-0.

[45]

J. A. Sethian and P. Smereka, Level set methods for fluid interfaces, Ann. Rev. Fluid Mech., 35 (2003), 341-372. doi: 10.1146/annurev.fluid.35.101101.161105.

[46]

G. Son and V. K. Dhir, Numerical simulation of film boiling near critical pressures with a level set method, J. Heat Transfer, 120 (1998), 183-192. doi: 10.1115/1.2830042.

[47]

M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, 114 (1994), 146-159. doi: 10.1006/jcph.1994.1155.

[48]

S. Tanguy, T. Ménard and A. Berlemont, A level set method for vaporizing two-phase flows, J. Comp. Phys., 221 (2007), 837-853. doi: 10.1016/j.jcp.2006.07.003.

[49]

M. Tenhaeff, Computation of Incompressible, Axisymmetric Flows in Electrically Conducting Fluids Under Influence of Rotating Magnetic Fields (in German), Diploma thesis, Albert-Ludwigs-Universität Freiburg i.Br., Mathematische Fakultät, 1997.

[50]

T. Tezduyar and R. Benney, Mesh moving techniques for fluid-structure interactions with large displacements, J. Applied Mechanics, 70 (2003), 58-63.

[51]

S. W. J. Welch and J. Wilson, A volume of fluid based method for fluid flows with phase change, J. Comp. Phys, 160 (2000), 662-682. doi: 10.1006/jcph.2000.6481.

[52]

T. Wick, Fluid-structure interactions using different mesh motion techniques, Computers & Structures, 89 (2011), 1456-1467. doi: 10.1016/j.compstruc.2011.02.019.

[53]

Y. F. Yap, J. C. Chai, K. C. Toh, T. N. Wong and Y. C. Lam, Numerical modeling of unidirectional stratified flow with and without phase change, J. Int. Heat Mass Transfer, 48 (2005), 477-486. doi: 10.1016/j.ijheatmasstransfer.2004.09.017.

[1]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[2]

Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117

[3]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[4]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[5]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[6]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[7]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[8]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[9]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[10]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[11]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[12]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[13]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[14]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[15]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[16]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[17]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[18]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[19]

Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037

[20]

Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (226)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]