June  2015, 35(6): 2405-2421. doi: 10.3934/dcds.2015.35.2405

Weak differentiability of scalar hysteresis operators

1. 

Fakultät für Mathematik, TU München, Boltzmannstr. 3, D 85747 Garching bei München

2. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1

Received  January 2014 Revised  May 2014 Published  December 2014

Rate independent evolutions can be formulated as operators, called hysteresis operators, between suitable function spaces. In this paper, we present some results concerning the existence and the form of directional derivatives and of Hadamard derivatives of such operators in the scalar case, that is, when the driving (input) function is a scalar function.
Citation: Martin Brokate, Pavel Krejčí. Weak differentiability of scalar hysteresis operators. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2405-2421. doi: 10.3934/dcds.2015.35.2405
References:
[1]

J.-J. Moreau, Problème d'evolution associé à un convexe mobile d'un espace hilbertien, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A791-A794. (In French.)

[2]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Eq., 26 (1977), 347-374. doi: 10.1016/0022-0396(77)90085-7.

[3]

A. Mielke, Evolution of rate independent systems, in Evolutionary Equations, vol. II (eds. C.M. Dafermos and and E. Feireisl), Handbook of Differential Equations, Elsevier/North Holland, Amsterdam, II (2005), 461-559.

[4]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177. doi: 10.1007/s002050200194.

[5]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabrejko, E. A. Lifshits and A. V. Pokrovskiĭ, An operator-hysterant, Dokl. Akad. Nauk SSSR, 190 (1970), 34-37; Soviet Math. Dokl., 11 (1970), 29-33.

[6]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis, Nauka, Moscow, 1983. (In Russian.)

[7]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis, Springer, Heidelberg, 1989. doi: 10.1007/978-3-642-61302-9.

[8]

A. Visintin, Differential models of hysteresis, Springer, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.

[9]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996. doi: 10.1007/978-1-4612-4048-8.

[10]

P. Krejĭ, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakkōtosho, Tokyo, 1996.

[11]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62. doi: 10.1080/17442509108833688.

[12]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.

[13]

P. Krejčí, Hysteresis in singularly perturbed problems, in Singular Perturbations and Hysteresis (eds. M.P. Mortell, R.E. O'Malley, A. Pokrovskiĭ, and V. Sobolev), SIAM, (2005), 73-100. doi: 10.1137/1.9780898717860.ch3.

[14]

M. Brokate and P. Krejčí, Duality in the space of regulated functions and the play operator, Math. Z., 245 (2003), 667-688. doi: 10.1007/s00209-003-0563-6.

[15]

R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7 (2008), 97-169.

[16]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems, Springer, Berlin, 1972.

[17]

D. Fraňková, Regulated functions, Math. Bohem., 116 (1991), 20-59.

[18]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. f. angew. Math., 8 (1928), 85-106. (In German.)

[19]

A. Yu. Ishlinskiĭ, Some applications of statistical methods to describing deformations of bodies, Izv. AN SSSR Techn. Ser., 9 (1928), 583-590. (In Russian.)

[20]

F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277-302. (In German.)

[21]

P. Krejčí, On Maxwell equations with the Preisach operator: The one-dimensional time-periodic case, Apl. Mat., 34 (1989), 364-374.

[22]

M. Brokate, Some BV properties of the Preisach hysteresis operator, Appl. Anal., 32 (1989), 229-252. doi: 10.1080/00036818908839851.

show all references

References:
[1]

J.-J. Moreau, Problème d'evolution associé à un convexe mobile d'un espace hilbertien, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A791-A794. (In French.)

[2]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Eq., 26 (1977), 347-374. doi: 10.1016/0022-0396(77)90085-7.

[3]

A. Mielke, Evolution of rate independent systems, in Evolutionary Equations, vol. II (eds. C.M. Dafermos and and E. Feireisl), Handbook of Differential Equations, Elsevier/North Holland, Amsterdam, II (2005), 461-559.

[4]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177. doi: 10.1007/s002050200194.

[5]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabrejko, E. A. Lifshits and A. V. Pokrovskiĭ, An operator-hysterant, Dokl. Akad. Nauk SSSR, 190 (1970), 34-37; Soviet Math. Dokl., 11 (1970), 29-33.

[6]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis, Nauka, Moscow, 1983. (In Russian.)

[7]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis, Springer, Heidelberg, 1989. doi: 10.1007/978-3-642-61302-9.

[8]

A. Visintin, Differential models of hysteresis, Springer, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.

[9]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996. doi: 10.1007/978-1-4612-4048-8.

[10]

P. Krejĭ, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakkōtosho, Tokyo, 1996.

[11]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62. doi: 10.1080/17442509108833688.

[12]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.

[13]

P. Krejčí, Hysteresis in singularly perturbed problems, in Singular Perturbations and Hysteresis (eds. M.P. Mortell, R.E. O'Malley, A. Pokrovskiĭ, and V. Sobolev), SIAM, (2005), 73-100. doi: 10.1137/1.9780898717860.ch3.

[14]

M. Brokate and P. Krejčí, Duality in the space of regulated functions and the play operator, Math. Z., 245 (2003), 667-688. doi: 10.1007/s00209-003-0563-6.

[15]

R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7 (2008), 97-169.

[16]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems, Springer, Berlin, 1972.

[17]

D. Fraňková, Regulated functions, Math. Bohem., 116 (1991), 20-59.

[18]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. f. angew. Math., 8 (1928), 85-106. (In German.)

[19]

A. Yu. Ishlinskiĭ, Some applications of statistical methods to describing deformations of bodies, Izv. AN SSSR Techn. Ser., 9 (1928), 583-590. (In Russian.)

[20]

F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277-302. (In German.)

[21]

P. Krejčí, On Maxwell equations with the Preisach operator: The one-dimensional time-periodic case, Apl. Mat., 34 (1989), 364-374.

[22]

M. Brokate, Some BV properties of the Preisach hysteresis operator, Appl. Anal., 32 (1989), 229-252. doi: 10.1080/00036818908839851.

[1]

Pavel Krejčí, Jürgen Sprekels. Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 283-292. doi: 10.3934/dcdss.2008.1.283

[2]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[3]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[4]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[5]

Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021059

[6]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[7]

Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101

[8]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[9]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[10]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[11]

Vyacheslav Maksimov. The method of extremal shift in control problems for evolution variational inequalities under disturbances. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021048

[12]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[13]

R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial and Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237

[14]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[15]

Samir Adly, Tahar Haddad. On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1791-1801. doi: 10.3934/dcdss.2020105

[16]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[17]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[18]

Julia Piantadosi, Phil Howlett, Jonathan Borwein, John Henstridge. Maximum entropy methods for generating simulated rainfall. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 233-256. doi: 10.3934/naco.2012.2.233

[19]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[20]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]