-
Previous Article
A new phase field model for material fatigue in an oscillating elastoplastic beam
- DCDS Home
- This Issue
-
Next Article
On a Cahn-Hilliard type phase field system related to tumor growth
Some mathematical problems related to the second order optimal shape of a crystallisation interface
1. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin |
References:
[1] |
E. Casas and L. A. Fernández, Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state, Appl. Math. Optim., 27 (1993), 35-56.
doi: 10.1007/BF01182597. |
[2] |
M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integr. Equat. Oper. Th., 15 (1992), 227-261.
doi: 10.1007/BF01204238. |
[3] |
M. Delfour, G. Payre and J. Zolesio, Approximation of nonlinear problems associated with radiating bodies in space, SIAM J. Numer. Anal., 24 (1987), 1077-1094.
doi: 10.1137/0724071. |
[4] |
W. Dreyer, F. Duderstadt, S. Eichler and M. Naldzhieva, On unwanted nucleation phenomena at the wall of a VGF chamber, Preprint 1312 of the Weierstass-Institute for Applied Analysis and Stochastics (WIAS), Berlin, 2008, Available in pdf-format at http://www.wias-berlin.de/preprint/1312/wias_preprints_1312.pdf. |
[5] |
P.-E. Druet, The classical solvability of the contact angle problem for generalized equations of mean curvature type, Portugaliae Math., 69 (2012), 233-258.
doi: 10.4171/PM/1916. |
[6] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations Of Second Order, Springer Verlag. Berlin, Heidelberg, 2001. |
[7] |
M. Hintermüller and K. Kunisch, PDE-constrained optimization subject to pointwise constraints on the control, the state, and its derivative, SIAM J. Optim., 20 (2009), 1133-1156.
doi: 10.1137/080737265. |
[8] |
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes (VI), J. Analyse Mathématique, 11 (1963), 165-188, French.
doi: 10.1007/BF02789983. |
[9] |
L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, vol. 1, Dunod Paris, Paris, 1968, French. |
[10] |
G. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987.
doi: 10.1007/978-1-4899-3614-1. |
[11] |
N. Ural'tseva, The solvability of the capillarity problem II, Vestnik Leningrad Univ., no 1, (1975), 143-149, Russian. |
[12] |
N. Ural'tseva, Estimates of the maximum moduli of gradients for solutions of capillary problems, Zapiski Nauchn. Sem. LOMI, 115 (1982), 274-284, Russian. English translation in J. Soviet Math, 28 (1985), 806-815. |
[13] |
A. Visintin, Models of Phase Transitions, Birkäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5. |
[14] |
J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces, Appl. Math. Optim., 5 (1979), 49-62.
doi: 10.1007/BF01442543. |
show all references
References:
[1] |
E. Casas and L. A. Fernández, Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state, Appl. Math. Optim., 27 (1993), 35-56.
doi: 10.1007/BF01182597. |
[2] |
M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integr. Equat. Oper. Th., 15 (1992), 227-261.
doi: 10.1007/BF01204238. |
[3] |
M. Delfour, G. Payre and J. Zolesio, Approximation of nonlinear problems associated with radiating bodies in space, SIAM J. Numer. Anal., 24 (1987), 1077-1094.
doi: 10.1137/0724071. |
[4] |
W. Dreyer, F. Duderstadt, S. Eichler and M. Naldzhieva, On unwanted nucleation phenomena at the wall of a VGF chamber, Preprint 1312 of the Weierstass-Institute for Applied Analysis and Stochastics (WIAS), Berlin, 2008, Available in pdf-format at http://www.wias-berlin.de/preprint/1312/wias_preprints_1312.pdf. |
[5] |
P.-E. Druet, The classical solvability of the contact angle problem for generalized equations of mean curvature type, Portugaliae Math., 69 (2012), 233-258.
doi: 10.4171/PM/1916. |
[6] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations Of Second Order, Springer Verlag. Berlin, Heidelberg, 2001. |
[7] |
M. Hintermüller and K. Kunisch, PDE-constrained optimization subject to pointwise constraints on the control, the state, and its derivative, SIAM J. Optim., 20 (2009), 1133-1156.
doi: 10.1137/080737265. |
[8] |
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes (VI), J. Analyse Mathématique, 11 (1963), 165-188, French.
doi: 10.1007/BF02789983. |
[9] |
L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, vol. 1, Dunod Paris, Paris, 1968, French. |
[10] |
G. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987.
doi: 10.1007/978-1-4899-3614-1. |
[11] |
N. Ural'tseva, The solvability of the capillarity problem II, Vestnik Leningrad Univ., no 1, (1975), 143-149, Russian. |
[12] |
N. Ural'tseva, Estimates of the maximum moduli of gradients for solutions of capillary problems, Zapiski Nauchn. Sem. LOMI, 115 (1982), 274-284, Russian. English translation in J. Soviet Math, 28 (1985), 806-815. |
[13] |
A. Visintin, Models of Phase Transitions, Birkäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5. |
[14] |
J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces, Appl. Math. Optim., 5 (1979), 49-62.
doi: 10.1007/BF01442543. |
[1] |
Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027 |
[2] |
J.-P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 431-450. doi: 10.3934/dcds.2000.6.431 |
[3] |
Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657 |
[4] |
Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089 |
[5] |
Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial and Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329 |
[6] |
Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001 |
[7] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[8] |
J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341 |
[9] |
Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010 |
[10] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control and Related Fields, 2021, 11 (4) : 739-769. doi: 10.3934/mcrf.2020045 |
[11] |
Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983 |
[12] |
Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231 |
[13] |
Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3535-3551. doi: 10.3934/dcdsb.2017213 |
[14] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[15] |
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235 |
[16] |
Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations and Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024 |
[17] |
Nidhal Gammoudi, Hasnaa Zidani. A differential game control problem with state constraints. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022008 |
[18] |
Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523 |
[19] |
Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 |
[20] |
Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]