Advanced Search
Article Contents
Article Contents

From compact semi-toric systems to Hamiltonian $S^1$-spaces

Abstract Related Papers Cited by
  • We show how any labeled convex polygon associated to a compact semi-toric system, as defined by Vũ ngọc, determines Karshon's labeled directed graph which classifies the underlying Hamiltonian $S^1$-space up to isomorphism. Then we characterize adaptable compact semi-toric systems, i.e. those whose underlying Hamiltonian $S^1$-action can be extended to an effective Hamiltonian $\mathbb{T}^2$-action, as those which have at least one associated convex polygon which satisfies the Delzant condition.
    Mathematics Subject Classification: Primary: 37J05, 37J35, 53D20.


    \begin{equation} \\ \end{equation}
  • [1]

    M. F. Atiyah, Convexity and commuting hamiltonians, Bull. London Math. Soc., 14 (1982), 1-15.doi: 10.1112/blms/14.1.1.


    O. Babelon and B. Doucot, Higher index focus-focus singularities in the Jaynes-Cummings-Gaudin model: symplectic invariants and monodromy, preprint, http://xxx.tau.ac.il/abs/1312.6087, arXiv:1312.6087. doi: 10.1016/j.geomphys.2014.07.011.


    A. V. Bolsinov and A. A. Oshemkov, Singularities of integrable Hamiltonian systems, in Topological Methods in the Theory of Integrable Systems, Camb. Sci. Publ., Cambridge, 2006, 1-67.


    M. Chaperon, Quelques outils de la théorie des actions différentiables, in Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982), Astérisque, 107-108, Soc. Math. France, Paris, 1983, 259-275.


    T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, (French) [Periodic Hamiltonians and convex images of the momentum mapping], Bull. Soc. Math. France, 116 (1988), 315-339.


    J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math., 33 (1980), 687-706.doi: 10.1002/cpa.3160330602.


    J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., 69 (1982), 259-269.doi: 10.1007/BF01399506.


    L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals, Ph.D thesis, University of Stockholm, 1984.


    L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case, Comment. Math. Helv., 65 (1990), 4-35.doi: 10.1007/BF02566590.


    A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics, Translated from the Russian by M. V. Tsaplina., Mathematics and its Applications (Soviet Series) 31, Kluwer Academic Publishers Group, Dordrecht, 1988.doi: 10.1007/978-94-009-3069-8.


    V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math., 67 (1982), 491-513.doi: 10.1007/BF01398933.


    Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Mem. Amer. Math. Soc., 672 (1999).doi: 10.1090/memo/0672.


    Y. Karshon, L. Kessler and M. Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions, J. Symplectic Geom., 5 (2007), 139-166.doi: 10.4310/JSG.2007.v5.n2.a1.


    Y. Karshon and S. Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc., 353 (2001), 4831-4861 (electronic).doi: 10.1090/S0002-9947-01-02799-4.


    Y. Karshon and S. Tolman, Complete invariants for Hamiltonian torus actions with two dimensional quotients, J. Symplectic Geom., 2 (2003), 25-82.doi: 10.4310/JSG.2004.v2.n1.a2.


    Y. Karshon and S. Tolman, Classification of Hamiltonian torus actions with two dimensional quotients, arXiv:1109.6873. doi: 10.2140/gt.2014.18.669.


    F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984.doi: 10.1007/BF01145470.


    N. C. Leung and M. Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom., 8 (2010), 143-187.doi: 10.4310/JSG.2010.v8.n2.a2.


    E. Miranda and N. T. Zung, Equivariant normal form for non-degenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. Éc. Norm. Sup., 37 (2004), 819-839.doi: 10.1016/j.ansens.2004.10.001.


    Á. Pelayo and S. Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds, Invent. Math., 177 (2009), 571-597.doi: 10.1007/s00222-009-0190-x.


    Á. Pelayo and S. Vũ Ngọc, Constructing integrable systems of semitoric type, Acta Math., 206 (2011), 93-125.doi: 10.1007/s11511-011-0060-4.


    Á. Pelayo and S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409-455.doi: 10.1090/S0273-0979-2011-01338-6.


    D. A. Sadovskií and B. I. Zĥilinskií, Monodromy, diabolic points and angular momentum coupling, Phys. Lett. A., 256 (1999), 235-244.doi: 10.1016/S0375-9601(99)00229-7.


    M. Symington, Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds (Athens, GA), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., 2003, 153-208.doi: 10.1090/pspum/071/2024634.


    S. Vũ Ngọc, On semi-global invariants for focus-focus singularities, Topology, 42 (2003), 365-380.doi: 10.1016/S0040-9383(01)00026-X.


    S. Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy, Adv. Math., 208 (2007), 909-934.doi: 10.1016/j.aim.2006.04.004.


    J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), 141-163.doi: 10.2307/2371062.


    N. T. Zung, Symplectic topology of integrable Hamiltonian systems I: Arnol'd-Liouville with singularities, Compositio Math., 101 (1996), 179-215.


    N. T. Zung, A note on focus-focus singularities, Diff. Geom. Appl., 7 (1997), 123-130.doi: 10.1016/S0926-2245(96)00042-3.


    N. T. Zung, Another note on focus-focus singularities, Lett. Math. Phys., 60 (2002), 87-99.doi: 10.1023/A:1015761729603.

  • 加载中

Article Metrics

HTML views() PDF downloads(193) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint