\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Robust exponential attractors for the modified phase-field crystal equation

Abstract Related Papers Cited by
  • We consider the modified phase-field crystal (MPFC) equation that has recently been proposed by P. Stefanovic et al. This is a variant of the phase-field crystal (PFC) equation, introduced by K.-R. Elder et al., which is characterized by the presence of an inertial term $\beta\phi_{tt}$. Here $\phi$ is the phase function standing for the number density of atoms and $\beta\geq 0$ is a relaxation time. The associated dynamical system for the MPFC equation with respect to the parameter $\beta$ is analyzed. More precisely, we establish the existence of a family of exponential attractors $\mathcal{M}_\beta$ that are Hölder continuous with respect to $\beta$.
    Mathematics Subject Classification: Primary: 35Q82, 37L25; Secondary: 74N05, 82C26.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Backofen, A. Rätz and A. Voigt, Nucleation and growth by a phase field crystal (PFC) model, Phil. Mag. Lett., 87 (2007), 813-820.doi: 10.1080/09500830701481737.

    [2]

    A. Baskaran, Z. Hu, J. S. Lowengrub, C. Wang, S. Wise and P. Zhou, Energy stable and efficient finite-difference nonlinear-multigrid schemes for the modified phase-field crystal equation, J. Comput. Phys., 250 (2013) 270-292.doi: 10.1016/j.jcp.2013.04.024.

    [3]

    A. Baskaran, J. S. Lowengrub, C. Wang and S. M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 51 (2013), 2851-2873.doi: 10.1137/120880677.

    [4]

    M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model, J. Comput. Phys., 227 (2008), 6241-6248.doi: 10.1016/j.jcp.2008.03.012.

    [5]

    M. Cheng, J. Kundin, D. Li and H. Emmerich, Thermodynamic consistency and fast dynamics in phase-field crystal modeling, Phil. Mag. Lett., 92 (2012), 517-526.doi: 10.1080/09500839.2012.691215.

    [6]

    K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth, Phys. Rev. Lett., 88 (2002), 245701.doi: 10.1103/PhysRevLett.88.245701.

    [7]

    K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase-field crystal, Phys. Rev. E, 70 (2004), 051605.doi: 10.1103/PhysRevE.70.051605.

    [8]

    M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbbR^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.doi: 10.1016/S0764-4442(00)00259-7.

    [9]

    M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.doi: 10.1017/S030821050000408X.

    [10]

    H. Emmerich, L. Gránásy and H. Löwen, Selected issues of phase-field crystal simulations, Eur. Phys. J. Plus, 126 (2011), p102.doi: 10.1140/epjp/i2011-11102-1.

    [11]

    H. Emmerich, H. Löwen, R. Wittkowskib, T. Gruhn, G. I. Tóth, G. Tegze and L. Gránásy, Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview, Adv. Phys., 61 (2012), 665-743.doi: 10.1080/00018732.2012.737555.

    [12]

    P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dyn. Syst., 10 (2004), 211-238.doi: 10.3934/dcds.2004.10.211.

    [13]

    P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125.doi: 10.1103/PhysRevE.71.046125.

    [14]

    P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E, 79 (2009), 051110, 11pp.doi: 10.1103/PhysRevE.79.051110.

    [15]

    P. Galenko and K. Elder, Marginal stability analysis of the phase field crystal model in one spatial dimension, Phys. Rev. B, 83 (2011), 064113.doi: 10.1103/PhysRevB.83.064113.

    [16]

    P. Galenko, H. Gomez, N. V. Kropotin and K. R. Elder, Unconditionally stable method and numerical solution of the hyperbolic (modified) phase-field crystal equation, Phys. Rev. E, 88 (2013), 013310.

    [17]

    H. Gomez and X. Nogueira, An unconditionally energy-stable method for the phase field crystal equation, Comput. Methods Appl. Mech. Engrg., 249/252 (2012), 52-61.doi: 10.1016/j.cma.2012.03.002.

    [18]

    M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci., 24 (2014), 2743-2783.doi: 10.1142/S0218202514500365.

    [19]

    Z. Hu, S. M. Wise, C. Wang and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation, J. Comput. Phys., 228 (2009), 5323-5339.doi: 10.1016/j.jcp.2009.04.020.

    [20]

    A. Miranville, V. Pata and S. Zelik, Exponential attractors for singularly perturbed damped wave equations: a simple construction, Asymptot. Anal., 53 (2007), 1-12.

    [21]

    A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of differential equations: evolutionary equations, IV, Elsevier/North-Holland, Amsterdam, (2008), 103-200.doi: 10.1016/S1874-5717(08)00003-0.

    [22]

    H. Ohnogi and Y. Shiwa, Instability of spatially periodic patterns due to a zero mode in the phase-field crystal equation, Phys. D, 237 (2008), 3046-3052.doi: 10.1016/j.physd.2008.06.011.

    [23]

    N. Provatas, J. A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld and K. R. Elder, Using the phase-field crystal method in the multi-scale modeling of microstructure evolution, Journal of the Minerals, Metals and Materials Society, 59 (2007), 83-90.doi: 10.1007/s11837-007-0095-3.

    [24]

    P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystals with elastic interactions, Phys. Rev. Lett., 96 (2006), 225504.doi: 10.1103/PhysRevLett.96.225504.

    [25]

    P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystal study of deformation and plasticity in nanocrystalline materials, Phys. Rev. E, 80 (2009), 046107.doi: 10.1103/PhysRevE.80.046107.

    [26]

    C. Wang and S. M. Wise, Global smooth solutions of the three dimensional modified phase field crystal equation, Methods Appl. Anal., 17 (2010), 191-211.doi: 10.4310/MAA.2010.v17.n2.a4.

    [27]

    C. Wang and S. M. Wise, An energy stable and convergent finite difference scheme for the modified phase-field crystal equation, SIAM J. Numer. Anal., 49 (2011), 945-969.doi: 10.1137/090752675.

    [28]

    S. M. Wise, C. Wang and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase-field crystal equation, SIAM J. Numer. Anal., 47 (2009), 2269-2288.doi: 10.1137/080738143.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return