Citation: |
[1] |
M. Brokate, Hysteresis operators, in Phase Transitions and Hysteresis, volume 1584 of Lecture Notes in Mathematics, Springer Berlin / Heidelberg, (1994), 1-38.doi: 10.1007/BFb0073394. |
[2] |
M. Brokate, Rate independent hysteresis, in Lectures on applied mathematics (eds. H.-J. Bungartz, R. H. W. Hoppe, and C. Zenger), Springer, (2000), 207-216. |
[3] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.doi: 10.1007/978-1-4612-4048-8. |
[4] |
E. Della Torre, E. Pinzaglia and E. Cardelli, Vector modeling - part I: Generalized hysteresis model, Phys. B, 372 (2006), 111-114.doi: 10.1016/j.physb.2005.10.028. |
[5] |
E. Della Torre, E. Pinzaglia and E. Cardelli, Vector modeling - part II: Ellipsoidal vector hysteresis model. Numerical application to a 2d case, Phys. B, 372 (2006), 115-119.doi: 10.1016/j.physb.2005.10.029. |
[6] |
D. Ekanayake and R. Iyer, Study of a play-like operator, Phys. B, 403 (2008), 456-459.doi: 10.1016/j.physb.2007.08.074. |
[7] |
L. Gasiński, Evolution hemivariational inequality with hysteresis operator in higher order term, Acta Math. Sin. (Engl. Ser.), 24 (2008), 107-120.doi: 10.1007/s10114-007-0997-6. |
[8] |
M. Jais, Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis, Opuscula Math., 28 (2008), 47-62. |
[9] |
B. Kaltenbacher and M. Kaltenbacher, Modeling and iterative identification of hysteresis via Preisach operators in pdes, in Lectures on advanced computational methods in mechanics, volume 1 of Radon Series Comp. Appl. Math., (eds. J. Kraus and U. Langer) de Gruyter, (2007), 1-45. |
[10] |
O. Klein, Representation of hysteresis operators acting on vector-valued monotaffine functions, Adv. Math. Sci. Appl., 22 (2012), 471-500. |
[11] |
O. Klein, Representation of hysteresis operators for vector-valued inputs by functions on strings, Phys. B, 407 (2012), 1399-1400.doi: 10.1016/j.physb.2011.10.015. |
[12] |
O. Klein, Darstellung von Hysterese-Operatoren mit Stückweise Monotaffinen Input-Funktionen Durch Funktionen auf Strings, (German) [Representation of hysteressi operator with piecewise monotaffine input functions by functions on strings], submitted habilitation thesis, Humboldt-Universität zu Berlin, 2013. |
[13] |
O. Klein, A representation result for hysteresis operators with vector valued inputs and its application to models for magnetic materials, Phys. B, 435 (2014), 113-115.doi: 10.1016/j.physb.2013.09.034. |
[14] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, volume 8 of Gakuto Int. Series Math. Sci. & Appl. Gakkōtosho, Tokyo, 1996. |
[15] |
P. Krejčí and M. Liero, Rate independent Kurzweil processes, Appl. Math., Praha, 54 (2009), 117-145.doi: 10.1007/s10492-009-0009-5. |
[16] |
P. Krejčí and V. Recupero, Comparing BV solutions of rate independent processes, J. Convex Anal., 21 (2014), 121-146. |
[17] |
K. Löschner and M. Brokate, Some mathematical properties of a vector Preisach operator, Phys. B, 403 (2008), 250-253.doi: 10.1016/j.physb.2007.08.021. |
[18] |
I. D. Mayergoyz, Mathematical Models of Hysteresis and their Applications, 2nd edition, Elsevier, 2003. |
[19] |
M. Miettinen and P. Panagiotopoulos, Hysteresis and hemivariational inequalities: Semilinear case, J. Global Optim., 13 (1998), 269-298.doi: 10.1023/A:1008288928441. |
[20] |
V. Recupero, BV-solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 269-315. |
[21] |
X. Tan, J. S. Baras and P. Krishnaprasad, Control of hysteresis in smart actuators with application to micro-positioning, Systems & Control Letters, 54 (2005), 483-492.doi: 10.1016/j.sysconle.2004.09.013. |
[22] |
A. Visintin, Differential Models of Hysteresis, volume 111 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.doi: 10.1007/978-3-662-11557-2. |
[23] |
C. Visone, Hysteresis modelling and compensation for smart sensors and actuators, J. Phys.: Conf. Ser., 138 (2008), 012028.doi: 10.1088/1742-6596/138/1/012028. |