Citation: |
[1] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.doi: 10.1007/BF01176474. |
[2] |
A. Ambrosetti and C. Sbordone, $\Gamma$-convergenza e G-convergenza per problemi non lineari di tipo ellittico, Boll. Un. Mat. Ital. (5), 13 (1976), 352-362. |
[3] |
H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, 1984. |
[4] |
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, Berlin, New York, 2010.doi: 10.1007/978-1-4419-5542-5. |
[5] |
G. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. |
[6] |
L. Boccardo and F. Murat, Remarques sur l'homogénéisation de certains problèmes quasi-linéaires, Portugal. Math., 41 (1982), 535-562. |
[7] |
A. Braides, $\Gamma$-Convergence for Beginners, Oxford University Press, Oxford, 2002.doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[8] |
A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998. |
[9] |
H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.doi: 10.5802/aif.280. |
[10] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[11] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[12] |
F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Amer. Math. Soc., Providence, R. I., (1976), 1-308. |
[13] |
F. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Functional Analysis, 11 (1972), 251-294.doi: 10.1016/0022-1236(72)90070-5. |
[14] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Vol. 580. Springer-Verlag, Berlin-New York, 1977. |
[15] |
V. Chiadò Piat, G. Dal Maso and A. Defranceschi, G-convergence of monotone operators, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 7 (1990), 123-160. |
[16] |
D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Univ. Press, New York, 1999. |
[17] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993.doi: 10.1007/978-1-4612-0327-8. |
[18] |
E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. |
[19] |
N. Dunford and J. Schwartz, Linear Operators, Vol. I. Interscience, New York, 1958. |
[20] |
I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnelles, Dunod Gauthier-Villars, Paris, 1974. |
[21] |
S. Fitzpatrick, Representing monotone operators by convex functions, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., Austral. Nat. Univ., Canberra, 20 (1988), 59-65. |
[22] |
G. Francfort, F. Murat and L. Tartar, Homogenization of monotone operators in divergence form with x-dependent multivalued graphs, Ann. Mat. Pura Appl. (4), 188 (2009), 631-652.doi: 10.1007/s10231-009-0094-9. |
[23] |
N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators, Ann. Mat. Pura Appl., 146 (1987), 1-13.doi: 10.1007/BF01762357. |
[24] |
N. Fusco and G. Moscariello, Further results on the homogenization of quasilinear operators, Ricerche Mat., 35 (1986), 231-246. |
[25] |
P. Hartman and G. Stampacchia, On some non linear elliptic differential functional equations, Acta Math., 115 (1966), 271-310.doi: 10.1007/BF02392210. |
[26] |
P. Hess, Variational inequalities for strongly nonlinear elliptic operators, J. Math. Pures Appl., 52 (1973), 285-297. |
[27] |
Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I, Kluwer, Dordrecht, 1979. |
[28] |
A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 1979. |
[29] |
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994.doi: 10.1007/978-3-642-84659-5. |
[30] |
N. Kenmochi, Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations, Hiroshima Math. J., 4 (1974), 229-263. |
[31] |
Le and V. Khoi, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proc. Amer. Math. Soc., 139 (2011), 1645-1658.doi: 10.1090/S0002-9939-2010-10594-4. |
[32] |
J. Leray and J. L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. |
[33] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. |
[34] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Springer, Berlin, 1972. (French edition: Dunod, Paris 1968) |
[35] |
P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., 117 (1978), 139-152.doi: 10.1007/BF02417888. |
[36] |
G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.doi: 10.1215/S0012-7094-62-02933-2. |
[37] |
A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Equations, Kluwer, Dordrecht, 1997. |
[38] |
U.E. Raĭtum, On G-convergence of quasilinear elliptic operators with unbounded coefficients, (Russian) Dokl. Akad. Nauk SSSR, 261 (1981), 30-34. |
[39] |
T. Roche, R. Rossi and U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence, SIAM J. Control Optim., 52 (2014), 1071-1107.doi: 10.1137/130909391. |
[40] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[41] |
S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571-597; errata, ibid. (3), 22 (1968), p673. |
[42] |
L. Tartar, Course Peccot, Collège de France, Paris 1977. [Unpublished, partially written in Topics in the Mathematical Modelling of Composite Materials. (A. Cherkaev, R. Kohn, eds.) Birkhäuser, Boston, (1997), 21-43.] |
[43] |
L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Springer, Berlin; UMI, Bologna, 2009.doi: 10.1007/978-3-642-05195-1. |
[44] |
R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam-New York, 1979. |
[45] |
A. Visintin, Strong convergence results related to strict convexity, Communications in P.D.E.s, 9 (1984), 439-466.doi: 10.1080/03605308408820337. |
[46] |
A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.doi: 10.1007/978-1-4612-4078-5. |
[47] |
A. Visintin, Variational formulation and structural stability of monotone equations, Calc. Var. Partial Differential Equations, 47 (2013), 273-317.doi: 10.1007/s00526-012-0519-y. |
[48] |
A. Visintin, Scale-transformations and homogenization of maximal monotone relations, with applications, Asymptotic Analysis, 82 (2013), 233-270. |
[49] |
A. Visintin, An extension of the Fitzpatrick theory, Commun. Pure Appl. Anal., 13 (2014), 2039-2058.doi: 10.3934/cpaa.2014.13.2039. |
[50] |
E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B: Nonlinear Monotone Operators, Springer, New York, 1990.doi: 10.1007/978-1-4612-0985-0. |