\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fixed point indices of planar continuous maps

Abstract Related Papers Cited by
  • We characterize the sequences of fixed point indices $\{i(f^n, p)\}_{n\ge 1}$ of fixed points that are isolated as an invariant set for a continuous map $f$ in the plane. In particular, we prove that the sequence is periodic and $i(f^n, p) \le 1$ for every $n \ge 0$. This characterization allows us to compute effectively the Lefschetz zeta functions for a wide class of continuous maps in the \(2\)-sphere, to obtain new results of existence of infinite periodic orbits inspired on previous articles of J. Franks and to give a partial answer to a problem of M. Shub about the growth of the number of periodic orbits of degree--\(d\) maps in the 2-sphere.
    Mathematics Subject Classification: 37C25, 54H25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. K. Babenko and S. A. Bogatyi, The behavior of the index of periodic points under iterations of a mapping, Math. USSR Izvestiya, 38 (1992), 1-26.

    [2]

    M. Brown, On the fixed point of iterates of planar homeomorphisms, Proc. Amer. Math. Soc., 108 (1990), 1109-1114.doi: 10.1090/S0002-9939-1990-0994772-9.

    [3]

    A. Dold, Fixed point indices of iterated maps, Invent. Math., 74 (1983), 419-435.doi: 10.1007/BF01394243.

    [4]

    R. Easton, Isolating blocks and epsilon chains for maps, Physica D, 39 (1989), 95-110.doi: 10.1016/0167-2789(89)90041-9.

    [5]

    J. Franks, Some Smooth Maps with Infinitely Many Hyperbolic Peridoic Points, Trans. Am. Math. Soc., 226 (1977), 175-179.

    [6]

    J. Franks, Homology and Dynamical Systems, CBMS Regional Conf. Ser. in Math., 49, Amer. Math. Soc, Providence, R.I., 1982.

    [7]

    J. Franks, The Conley index and non-existence of minimal homeomorphims, Illinois J. Math. Soc., 43 (1999), 457-464.

    [8]

    J. Franks and D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc., 352 (2000), 3305-3322.doi: 10.1090/S0002-9947-00-02488-0.

    [9]

    G. Graff and P. Nowak-Przygodzki, Fixed point indices of iterations of planar homeomorphisms, Topol. Methods Nonlinear Anal., 22 (2003), 159-166.

    [10]

    G. Graff, P. Nowak-Przygodzki and F. R. Ruiz del Portal, Local fixed point indices of iterations of planar maps, J. Dynam. Differ. Equat., 23 (2011), 213-223.doi: 10.1007/s10884-011-9204-7.

    [11]

    L. Hernández-Corbato, P. Le Calvez and F. R. Ruiz del Portal, About the homological Conley index of invariant acyclic continua, Geom. Topol., 17 (2013), 2977-3026.doi: 10.2140/gt.2013.17.2977.

    [12]

    J. Iglesias, A. Portela, A. Rovella and J. Xavier, Periodic points for annulus endomorphisms, preprint, 2014.

    [13]

    J. Jezierski and W. Marzantowicz, Homotopy Methods in Topological Fixed and Periodic Points Theory, Topological Fixed Point Theory and Its Applications, 3, Springer, Dordrecht, 2006.

    [14]

    P. Le Calvez, Dynamique des homéomorphismes du plan au voisinage d'un point fixe, Ann. Scient. Éc. Norm. Sup., 36 (2003), 139-171.doi: 10.1016/S0012-9593(03)00005-3.

    [15]

    P. Le Calvez, F. R. Ruiz del Portal and J. M. Salazar, Fixed point indices of the iterates of $\mathbbR^3$-homeomorphisms at fixed points which are isolated invariant sets, J. London Math. Soc., 82 (2010), 683-696.doi: 10.1112/jlms/jdq050.

    [16]

    P. Le Calvez and J. C. Yoccoz, Un theoréme d'indice pour les homéomorphismes du plan au voisinage d'un point fixe, Annals of Math., 146 (1997), 241-293.doi: 10.2307/2952463.

    [17]

    P. Le Calvez and J. C. Yoccoz, Suite des indices de Lefschetz des itérés pour un domaine de Jordan qui est un bloc isolant, Unpublished.

    [18]

    K. Mischaikow and M. Mrozek, Conley index, in Handbook of Dynamical Systems, 2, North-Holland, 2002, 393-460.doi: 10.1016/S1874-575X(02)80030-3.

    [19]

    C. Pugh and M. Shub, Periodic points on the 2-sphere, Discrete Contin. Dyn. Syst., 34 (2014), 1171-1182.doi: 10.3934/dcds.2014.34.1171.

    [20]

    D. Richeson and J. Wiseman, A fixed point theorem for bounded dynamical systems, Illinois Journal of Mathematics, 46 (2002), 491-495; Addendum, 48 (2004), 1079-1080.

    [21]

    F. R. Ruiz del Portal and J. M. Salazar, Fixed point index of iterations of local homeomorphisms of the plane: A Conley-index approach, Topology, 41 (2002), 1199-1212.doi: 10.1016/S0040-9383(01)00035-0.

    [22]

    M. Shub, All, most, some differentiable dynamical systems, in Proceedings of the International Congress of Mathematicians, European Math. Society, III, Madrid, Spain, 2006, 99-120.

    [23]

    M. Shub and D. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps, Topology, 13 (1974), 189-191.doi: 10.1016/0040-9383(74)90009-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return