Citation: |
[1] |
D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Nashua, 1998. |
[2] |
G. Bitsoris, On the positive invariance of polyhedral sets for discrete-time systems, System and Control Letters, 11 (1998), 243-248.doi: 10.1016/0167-6911(88)90065-5. |
[3] |
F. Blanchini, Set invariance in control, Automatica, 35 (1999), 1747-1767.doi: 10.1016/S0005-1098(99)00113-2. |
[4] |
F. Blanchini and S. Miani, Constrained stabilization of continuous-time linear systems, Systems and Control Letters, 28 (1996), 95-102.doi: 10.1016/0167-6911(96)00013-8. |
[5] |
F. Blanchini, S. Miani, C. E. T. Dórea and J. C. Hennet, Discussion on: '(A, B)- invariance conditions of polyhedral domains for continuous-time systems by C. E. T. Dórea and J.-C. Hennet', European Journal of Control, 5 (1999), 82-86.doi: 10.1016/S0947-3580(99)70142-1. |
[6] |
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia, 1994.doi: 10.1137/1.9781611970777. |
[7] |
E. B. Castelan and J. C. Hennet, On invariant polyhedra of continuous-time linear systems, IEEE Transactions on Automatic Control, 38 (1993), 1680-1685.doi: 10.1109/9.262058. |
[8] |
C. E. T. Dórea and J. C. Hennet, (A, B)-invariance conditions of polyhedral domains for continuous-time systems, European Journal of Control, 5 (1999), 70-81. |
[9] |
C. E. T. Dórea and J. C. Hennet, (A,B)-invariant polyhedral sets of linear discrete time systems, Journal of Optimization Theory and Applications, 103 (1999), 521-542.doi: 10.1023/A:1021727806358. |
[10] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, New York, 1993. |
[11] |
N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, 2008.doi: 10.1137/1.9780898717778. |
[12] |
R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1990. |
[13] |
Z. Horváth, Invariant cones and polyhedra for dynamical systems, in Proceeding of the International Conference in Memoriam Gyula Farkas, Cluj Univ. Press, Cluj-Napoca, 2006, 65-74. |
[14] |
Z. Horváth, On the positivity step size threshold of Runge-Kutta methods, Applied Numerical Mathematics, 53 (2005), 341-356.doi: 10.1016/j.apnum.2004.08.026. |
[15] |
Z. Horváth, Y. Song and T. Terlaky, Invariance Preserving Discretization Methods of Dynamical Systems, Lehigh University, Department of Industrial and Systems Engineering, Technical Report 14T-009, 2014. |
[16] |
Z. Horváth, Y. Song and T. Terlaky, A Novel Unified Approach to Invariance in Control, Lehigh University, Department of Industrial and Systems Engineering, Technical Report 14T-003, 2014. |
[17] |
J. F. B. M. Kraaijevanger, Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems, Numerische Mathematik, 48 (1986), 303-322.doi: 10.1007/BF01389477. |
[18] |
R. Loewy and H. Schneider, Positive operators on the $n$-dimensional ice cream cone, Journal of Mathematical Analysis and Applications, 49 (1975), 375-392.doi: 10.1016/0022-247X(75)90186-9. |
[19] |
C. Roos, T. Terlaky and J.-Ph. Vial, Interior Point Methods for Linear Optimization, Springer Science, Heidelberg, 2006. |
[20] |
M. N. Spijker, Contractivity in the numerical solution of initial value problems, Numerische Mathematik, 42 (1983), 271-290.doi: 10.1007/BF01389573. |
[21] |
R. Stern and H. Wolkowicz, Exponential nonnegativity on the ice cream cone, SIAM Journal on Matrix Analysis and Applications, 12 (1991), 160-165.doi: 10.1137/0612012. |
[22] |
B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Lectures Series, American Mathematical Society, 2002. |
[23] |
J. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM Journal on Applied Mathematics, 16 (1968), 1208-1222.doi: 10.1137/0116101. |