-
Previous Article
Variational analysis of semilinear plate equation with free boundary conditions
- DCDS Home
- This Issue
-
Next Article
Multiple solutions to elliptic inclusions via critical point theory on closed convex sets
Asymptotics in shallow water waves
1. | Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States, United States |
References:
[1] |
V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits, Ann. Inst. Fourier, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
I. Bondareva and M. Shubin, Growing asymptotic solutions of the Korteweg-de Vries equation and of its higher analogues, Dokl. Akad. Nauk SSSR, 267 (1982), 1035-1038. |
[3] |
I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg-de Vries equation in classes of increasing functions, Vestnik Moskov. Univ. Ser. I Mat. Mekh, 102 (1985), 35-38. |
[4] |
I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions, J. Soviet Math., 51 (1990), 2323-2332.
doi: 10.1007/BF01094991. |
[5] |
A. Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math Anal., 41 (2009), 1559-1588.
doi: 10.1137/090748500. |
[6] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett, 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[7] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier, Grenoble, 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[8] |
A. Constantin, On the scattering problem for Camassa-Holm equation, Proc. R. Soc. Lond. A, 457 (2001), 953-970.
doi: 10.1098/rspa.2000.0701. |
[9] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[10] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328. |
[11] |
A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.
doi: 10.1007/PL00004793. |
[12] |
A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.
doi: 10.1512/iumj.1998.47.1466. |
[13] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equation, Arch. Rational Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[14] |
A. Constantin and H. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.
doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. |
[15] |
C. De Lellis, T. Kappeler and P. Topalov, Low regularity solutions of the Camassa-Holm equation, Comm. Partial Differential Equations, 32 (2007), 87-126.
doi: 10.1080/03605300601091470. |
[16] |
D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102-163.
doi: 10.2307/1970699. |
[17] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
D. Holm and M. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Applied Dynamical Systems, 2 (2003), 323-380.
doi: 10.1137/S1111111102410943. |
[19] |
D. Holm and M. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in 1+1 nonlinear PDE, Phys. Lett. A, 308 (2003), 437-444.
doi: 10.1016/S0375-9601(03)00114-2. |
[20] |
H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms, Mem. Amer. Math. Soc., 226 (2013), vi+60 pp.
doi: 10.1090/S0065-9266-2013-00676-4. |
[21] |
T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity, J. Geom. Anal., 18 (2008), 443-477.
doi: 10.1007/s12220-008-9013-3. |
[22] |
S. Lang, Differential Manifolds, Addison-Wesley Series in Mathematics, 1972. |
[23] |
H. McKean, Fredholm determinants and Camassa-Holm hierarchy, Comm. Pure Appl. Math., 56 (2003), 638-680.
doi: 10.1002/cpa.10069. |
[24] |
R. McOwen and P. Topalov, Groups of asymptotic diffeomorphisms,, , ().
|
[25] |
G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.
doi: 10.1016/S0393-0440(97)00010-7. |
[26] |
G. Misiolek, Classical solutions of the periodic Camassa-Holm equation, GAFA, 12 (2002), 1080-1104.
doi: 10.1007/PL00012648. |
[27] |
V. Ovsienko and B. Khesin, Korteweg-de Vries superequations as an Euler equation, Functional Anal. Appl., 21 (1987), 81-82. |
[28] |
J. Toland, Stokes waves, Topological Methods in Nonlinear Analysis, 7 (1996), 1-48. |
show all references
References:
[1] |
V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits, Ann. Inst. Fourier, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
I. Bondareva and M. Shubin, Growing asymptotic solutions of the Korteweg-de Vries equation and of its higher analogues, Dokl. Akad. Nauk SSSR, 267 (1982), 1035-1038. |
[3] |
I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg-de Vries equation in classes of increasing functions, Vestnik Moskov. Univ. Ser. I Mat. Mekh, 102 (1985), 35-38. |
[4] |
I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions, J. Soviet Math., 51 (1990), 2323-2332.
doi: 10.1007/BF01094991. |
[5] |
A. Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math Anal., 41 (2009), 1559-1588.
doi: 10.1137/090748500. |
[6] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett, 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[7] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier, Grenoble, 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[8] |
A. Constantin, On the scattering problem for Camassa-Holm equation, Proc. R. Soc. Lond. A, 457 (2001), 953-970.
doi: 10.1098/rspa.2000.0701. |
[9] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[10] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328. |
[11] |
A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.
doi: 10.1007/PL00004793. |
[12] |
A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.
doi: 10.1512/iumj.1998.47.1466. |
[13] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equation, Arch. Rational Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[14] |
A. Constantin and H. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.
doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. |
[15] |
C. De Lellis, T. Kappeler and P. Topalov, Low regularity solutions of the Camassa-Holm equation, Comm. Partial Differential Equations, 32 (2007), 87-126.
doi: 10.1080/03605300601091470. |
[16] |
D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102-163.
doi: 10.2307/1970699. |
[17] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
D. Holm and M. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Applied Dynamical Systems, 2 (2003), 323-380.
doi: 10.1137/S1111111102410943. |
[19] |
D. Holm and M. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in 1+1 nonlinear PDE, Phys. Lett. A, 308 (2003), 437-444.
doi: 10.1016/S0375-9601(03)00114-2. |
[20] |
H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms, Mem. Amer. Math. Soc., 226 (2013), vi+60 pp.
doi: 10.1090/S0065-9266-2013-00676-4. |
[21] |
T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity, J. Geom. Anal., 18 (2008), 443-477.
doi: 10.1007/s12220-008-9013-3. |
[22] |
S. Lang, Differential Manifolds, Addison-Wesley Series in Mathematics, 1972. |
[23] |
H. McKean, Fredholm determinants and Camassa-Holm hierarchy, Comm. Pure Appl. Math., 56 (2003), 638-680.
doi: 10.1002/cpa.10069. |
[24] |
R. McOwen and P. Topalov, Groups of asymptotic diffeomorphisms,, , ().
|
[25] |
G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.
doi: 10.1016/S0393-0440(97)00010-7. |
[26] |
G. Misiolek, Classical solutions of the periodic Camassa-Holm equation, GAFA, 12 (2002), 1080-1104.
doi: 10.1007/PL00012648. |
[27] |
V. Ovsienko and B. Khesin, Korteweg-de Vries superequations as an Euler equation, Functional Anal. Appl., 21 (1987), 81-82. |
[28] |
J. Toland, Stokes waves, Topological Methods in Nonlinear Analysis, 7 (1996), 1-48. |
[1] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[2] |
David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629 |
[3] |
Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531 |
[4] |
Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501 |
[5] |
Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493 |
[6] |
Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781 |
[7] |
Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042 |
[8] |
Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393 |
[9] |
Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025 |
[10] |
Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699 |
[11] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[12] |
Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure and Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815 |
[13] |
Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019 |
[14] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[15] |
David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113 |
[16] |
Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure and Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030 |
[17] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243 |
[18] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[19] |
Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 |
[20] |
Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]