\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A nonlocal dispersal logistic equation with spatial degeneracy

Abstract Related Papers Cited by
  • In this paper, we study the nonlocal dispersal Logistic equation \begin{equation*} \begin{cases} u_t=Du+\lambda m(x)u-c(x)u^p &\text{ in }{\Omega}\times(0,+\infty),\\ u(x,0)=u_0(x)\geq0&\text{ in }{\Omega}, \end{cases} \end{equation*} where $\Omega\subset\mathbb{R}^N$ is a bounded domain, $\lambda>0$ and $p>1$ are constants. $Du(x,t)=\int_{\Omega}J(x-y)(u(y,t)-u(x,t))dy$ represents the nonlocal dispersal operator with continuous and nonnegative dispersal kernel $J$, $m\in C(\bar{\Omega})$ and may change sign in $\Omega$. The function $c$ is nonnegative and has a degeneracy in some subdomain of $\Omega$. We establish the existence and uniqueness of positive stationary solution and also consider the effect of degeneracy of $c$ on the long-time behavior of positive solutions. Our results reveal that the necessary condition to guarantee a positive stationary solution and the asymptotic behaviour of solutions are quite different from those of the corresponding reaction-diffusion equation.
    Mathematics Subject Classification: Primary: 35B40, 35K57; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.doi: 10.1137/1018114.

    [2]

    F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010.doi: 10.1090/surv/165.

    [3]

    P. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, in Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52.

    [4]

    P. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.doi: 10.1137/S0036141000374002.

    [5]

    P. Bates, X. Chen and A. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var. Partial Differential Equations, 24 (2005), 261-281.doi: 10.1007/s00526-005-0308-y.

    [6]

    P. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.doi: 10.1007/s002050050189.

    [7]

    P. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, J. Statist. Phys., 95 (1999), 1119-1139.doi: 10.1023/A:1004514803625.

    [8]

    P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.doi: 10.1007/s002050050037.

    [9]

    P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.doi: 10.1016/j.jmaa.2006.09.007.

    [10]

    H. Berestycki and N. Rodríguez, Non-local reaction-diffusion equations with a barrier, preprint, 2013.

    [11]

    R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments, Proc. Roy. Soc. Edinburgh, 112 (1989), 293-318.doi: 10.1017/S030821050001876X.

    [12]

    E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation, J. Math. Pures Appl., 86 (2006), 271-291.doi: 10.1016/j.matpur.2006.04.005.

    [13]

    A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.doi: 10.1006/jdeq.1998.3571.

    [14]

    S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

    [15]

    C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.doi: 10.1016/j.jde.2006.12.002.

    [16]

    C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal., 187 (2008), 137-156.doi: 10.1007/s00205-007-0062-8.

    [17]

    J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.doi: 10.1016/j.jde.2010.07.003.

    [18]

    J. Coville, Harnack type inequality for positive solution of some integral equation, Ann. Mat. Pura Appl., 191 (2012), 503-528.doi: 10.1007/s10231-011-0193-2.

    [19]

    J. Coville, Nonlocal refuge model with a partial control, Discrete Contin. Dyn. Syst., 35 (2015), 1421-1446.doi: 10.3934/dcds.2015.35.1421.

    [20]

    J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.doi: 10.1137/060676854.

    [21]

    J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179-223.doi: 10.1016/j.anihpc.2012.07.005.

    [22]

    J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755.doi: 10.1017/S0308210504000721.

    [23]

    M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2.

    [24]

    Y. Du and Y. Yamada, On the long-time limit of positive solutions to the degenerate logistic equation, Discrete Contin. Dyn. Syst., 25 (2009), 123-132.doi: 10.3934/dcds.2009.25.123.

    [25]

    P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, 2003, 153-191.

    [26]

    J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Differential Equations, 127 (1996), 295-319.doi: 10.1006/jdeq.1996.0071.

    [27]

    J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs, Arch. Ration. Mech. Anal., 145 (1998), 261-289.doi: 10.1007/s002050050130.

    [28]

    J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053.doi: 10.3934/cpaa.2009.8.2037.

    [29]

    J. García-Melián and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators, Nonlinear Anal., 71 (2009), 6116-6121.doi: 10.1016/j.na.2009.06.004.

    [30]

    M. Grinfeld, G. Hines, V. Hutson and K. Mischaikow, Non-local dispersal, Differential Integral Equations, 18 (2005), 1299-1320.

    [31]

    V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.doi: 10.1007/s00285-003-0210-1.

    [32]

    V. Hutson, W. Shen and G. T. Vickers, Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence, Rocky Mountain J. Math., 38 (2008), 1147-1175.doi: 10.1216/RMJ-2008-38-4-1147.

    [33]

    L. Ignat, J. D. Rossi and A. San Antolin, Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space, J. Differential Equations, 252 (2012), 6429-6447.doi: 10.1016/j.jde.2012.03.011.

    [34]

    C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.doi: 10.3934/dcds.2010.26.551.

    [35]

    C. Y. Kao, Y. Lou and W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.doi: 10.3934/dcdsb.2012.17.2047.

    [36]

    W. T. Li, Y. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.doi: 10.1016/j.nonrwa.2009.07.005.

    [37]

    T. Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$, Trans. Amer. Math. Soc., 331 (1992), 503-527.doi: 10.2307/2154124.

    [38]

    S. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.doi: 10.1007/s00033-007-7005-y.

    [39]

    N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.doi: 10.1007/s10884-012-9276-z.

    [40]

    W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.doi: 10.1016/j.jde.2010.04.012.

    [41]

    W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.doi: 10.1090/S0002-9939-2011-11011-6.

    [42]

    W. Shen and A. Zhang, Effects of spatial variations and dispersal strategies on the spreading speeds of monostable models in periodic habitats, Rocky Mountain J. Math., in press.

    [43]

    J. W. Sun, W. T. Li and F. Y. Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems, Nonlinear Anal., 74 (2011), 3501-3509.doi: 10.1016/j.na.2011.02.034.

    [44]

    Y. J. Sun, W. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.doi: 10.1016/j.jde.2011.04.020.

    [45]

    K. Taira, Diffusive logistic equations in population dynamics, Adv. Differential Equations, 7 (2002), 237-256.

    [46]

    X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461.doi: 10.1006/jdeq.2001.4129.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(186) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return