\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior of solutions for competitive models with a free boundary

Abstract Related Papers Cited by
  • In this paper, we study a competitive model involving two species separated by a free boundary by virtue of strong competition. When the initial data has positive lower bounds near $\pm\infty$, we prove that the solution converges, as $t\rightarrow \infty$, to a traveling wave solution and the free boundary moves to infinity with a constant speed.
    Mathematics Subject Classification: Primary: 35B40, 35K57; Secondary: 35R35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. B. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.doi: 10.1515/crll.1988.390.79.

    [2]

    J. J. Cai, B. D. Lou and M. L. Zhou, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions, J. Dynam. Differential Equations, 26 (2014), 1007-1028.doi: 10.1007/s10884-014-9404-z.

    [3]

    C. H. Chang and C. C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model, Commun. Pure Appl. Anal., 12 (2013), 1065-1074.doi: 10.3934/cpaa.2013.12.1065.

    [4]

    X. F. Chen, B. D. Lou, M. L. Zhou and T. Giletti, Long time behavior of solutions of a reaction-diffusion equation on unbounded intervals with Robin boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press, 2014.doi: 10.1016/j.anihpc.2014.08.004.

    [5]

    Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.doi: 10.1137/090771089.

    [6]

    Y. H. Du, H. Matsuzawa and M. L. Zhou, Spreading speed determined by nonlinear free boundary problems in high dimensions, J. Math. Pures Appl., preprint.

    [7]

    P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.

    [8]

    O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Academic Press, New York, London, 1968.

    [9]

    G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996.doi: 10.1142/3302.

    [10]

    M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186.doi: 10.1007/BF03167042.

    [11]

    M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.

    [12]

    M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.

    [13]

    J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817-826.doi: 10.3934/dcdsb.2014.19.817.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(142) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return