August  2015, 35(8): 3327-3342. doi: 10.3934/dcds.2015.35.3327

Existence and regularity of solutions in nonlinear wave equations

1. 

School of Mathematics, Georgia Institute of Technology, Atlanta, Ga. 30332

2. 

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, 75080, United States

Received  September 2014 Revised  October 2014 Published  February 2015

In this paper, we study the global existence and regularity of Hölder continuous solutions for a series of nonlinear partial differential equations describing nonlinear waves.
Citation: Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327
References:
[1]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996.  doi: 10.1137/050623036.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl. (9), 94 (2010), 68.  doi: 10.1016/j.matpur.2010.02.005.  Google Scholar

[4]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation,, Comm. Math. Phys., 266 (2006), 471.  doi: 10.1007/s00220-006-0047-8.  Google Scholar

[5]

A. Bressan, P. Zhang and Y. Zheng, Asymptotic variational wave equations,, Arch. Ration. Mech. Anal., 183 (2007), 163.  doi: 10.1007/s00205-006-0014-8.  Google Scholar

[6]

G. Chen, Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations,, J. Hyperbolic Differ. Equ., 8 (2011), 671.  doi: 10.1142/S0219891611002536.  Google Scholar

[7]

G. Chen, R. Pan and S. Zhu, Singularity formation for compressible Euler equations,, submitted, ().   Google Scholar

[8]

G. Chen and R. Young, Smooth waves and gradient blowup for the inhomogeneous wave equations,, J. Differential Equations, 252 (2012), 2580.  doi: 10.1016/j.jde.2011.09.004.  Google Scholar

[9]

G. Chen, R. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems,, J. Hyperbolic Differ. Equ., 10 (2013), 149.  doi: 10.1142/S0219891613500069.  Google Scholar

[10]

G. Chen, P. Zhang and Y. Zheng, Energy conservative solutions to a nonlinear wave system of nematic liquid crystals,, Comm. Pure Appl. Anal., 12 (2013), 1445.  doi: 10.3934/cpaa.2013.12.1445.  Google Scholar

[11]

G. Chen and Y. Zheng, Existence and singularity to a wave system of nematic liquid crystals,, J. Math. Anal. Appl., 398 (2013), 170.  doi: 10.1016/j.jmaa.2012.08.048.  Google Scholar

[12]

C. M. Dafermos, Hyperbolic Conservations Laws in Continuum Physics, (third edition),, Springer-Verlag, (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[13]

H. Holden and X. Raynaud, Global semigroup of conservative solutions of the nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 201 (2011), 871.  doi: 10.1007/s00205-011-0403-5.  Google Scholar

[14]

R. Glassey, J. Hunter and Y. Zheng, Singularities of a variational wave equation,, J. Differential Equations, 129 (1996), 49.  doi: 10.1006/jdeq.1996.0111.  Google Scholar

[15]

R. Glassey, J. Hunter and Y. Zheng, Singularities and Oscillations in a Nonlinear Variational Wave Equation,, Singularities and Oscillations, 91 (1997), 37.  doi: 10.1007/978-1-4612-1972-9_3.  Google Scholar

[16]

J. K. Hunter and R. H. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498.  doi: 10.1137/0151075.  Google Scholar

[17]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I. global existence of weak solutions,, Arch. Rat. Mech. Anal., 129 (1995), 305.  doi: 10.1007/BF00379259.  Google Scholar

[18]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II. the zero viscosity and dispersion limits,, Arch. Rat. Mech. Anal., 129 (1995), 355.  doi: 10.1007/BF00379260.  Google Scholar

[19]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Physics, 5 (1964), 611.  doi: 10.1063/1.1704154.  Google Scholar

[20]

P. Lax and J. Glimm, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws,, Memoirs of the American Mathematical Society, 101 (1970).   Google Scholar

[21]

H. Lindblad, Global solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 45 (1992), 1063.  doi: 10.1002/cpa.3160450902.  Google Scholar

[22]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 166 (2003), 303.  doi: 10.1007/s00205-002-0232-7.  Google Scholar

[23]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data,, Ann. I. H. Poincaré, 22 (2005), 207.  doi: 10.1016/j.anihpc.2004.04.001.  Google Scholar

[24]

P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals,, Arch. Ration. Mech. Anal., 195 (2010), 701.  doi: 10.1007/s00205-009-0222-0.  Google Scholar

[25]

P. Zhang and Y. Zheng, Energy conservative solutions to a one-dimensional full variational wave system,, Comm. Pure Appl. Math., 65 (2012), 683.  doi: 10.1002/cpa.20380.  Google Scholar

show all references

References:
[1]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996.  doi: 10.1137/050623036.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl. (9), 94 (2010), 68.  doi: 10.1016/j.matpur.2010.02.005.  Google Scholar

[4]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation,, Comm. Math. Phys., 266 (2006), 471.  doi: 10.1007/s00220-006-0047-8.  Google Scholar

[5]

A. Bressan, P. Zhang and Y. Zheng, Asymptotic variational wave equations,, Arch. Ration. Mech. Anal., 183 (2007), 163.  doi: 10.1007/s00205-006-0014-8.  Google Scholar

[6]

G. Chen, Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations,, J. Hyperbolic Differ. Equ., 8 (2011), 671.  doi: 10.1142/S0219891611002536.  Google Scholar

[7]

G. Chen, R. Pan and S. Zhu, Singularity formation for compressible Euler equations,, submitted, ().   Google Scholar

[8]

G. Chen and R. Young, Smooth waves and gradient blowup for the inhomogeneous wave equations,, J. Differential Equations, 252 (2012), 2580.  doi: 10.1016/j.jde.2011.09.004.  Google Scholar

[9]

G. Chen, R. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems,, J. Hyperbolic Differ. Equ., 10 (2013), 149.  doi: 10.1142/S0219891613500069.  Google Scholar

[10]

G. Chen, P. Zhang and Y. Zheng, Energy conservative solutions to a nonlinear wave system of nematic liquid crystals,, Comm. Pure Appl. Anal., 12 (2013), 1445.  doi: 10.3934/cpaa.2013.12.1445.  Google Scholar

[11]

G. Chen and Y. Zheng, Existence and singularity to a wave system of nematic liquid crystals,, J. Math. Anal. Appl., 398 (2013), 170.  doi: 10.1016/j.jmaa.2012.08.048.  Google Scholar

[12]

C. M. Dafermos, Hyperbolic Conservations Laws in Continuum Physics, (third edition),, Springer-Verlag, (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[13]

H. Holden and X. Raynaud, Global semigroup of conservative solutions of the nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 201 (2011), 871.  doi: 10.1007/s00205-011-0403-5.  Google Scholar

[14]

R. Glassey, J. Hunter and Y. Zheng, Singularities of a variational wave equation,, J. Differential Equations, 129 (1996), 49.  doi: 10.1006/jdeq.1996.0111.  Google Scholar

[15]

R. Glassey, J. Hunter and Y. Zheng, Singularities and Oscillations in a Nonlinear Variational Wave Equation,, Singularities and Oscillations, 91 (1997), 37.  doi: 10.1007/978-1-4612-1972-9_3.  Google Scholar

[16]

J. K. Hunter and R. H. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498.  doi: 10.1137/0151075.  Google Scholar

[17]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I. global existence of weak solutions,, Arch. Rat. Mech. Anal., 129 (1995), 305.  doi: 10.1007/BF00379259.  Google Scholar

[18]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II. the zero viscosity and dispersion limits,, Arch. Rat. Mech. Anal., 129 (1995), 355.  doi: 10.1007/BF00379260.  Google Scholar

[19]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Physics, 5 (1964), 611.  doi: 10.1063/1.1704154.  Google Scholar

[20]

P. Lax and J. Glimm, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws,, Memoirs of the American Mathematical Society, 101 (1970).   Google Scholar

[21]

H. Lindblad, Global solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 45 (1992), 1063.  doi: 10.1002/cpa.3160450902.  Google Scholar

[22]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 166 (2003), 303.  doi: 10.1007/s00205-002-0232-7.  Google Scholar

[23]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data,, Ann. I. H. Poincaré, 22 (2005), 207.  doi: 10.1016/j.anihpc.2004.04.001.  Google Scholar

[24]

P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals,, Arch. Ration. Mech. Anal., 195 (2010), 701.  doi: 10.1007/s00205-009-0222-0.  Google Scholar

[25]

P. Zhang and Y. Zheng, Energy conservative solutions to a one-dimensional full variational wave system,, Comm. Pure Appl. Math., 65 (2012), 683.  doi: 10.1002/cpa.20380.  Google Scholar

[1]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[2]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[3]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[7]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[8]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[11]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[12]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[13]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[14]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[15]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[18]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[19]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[20]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (148)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]