-
Previous Article
On a fractional harmonic replacement
- DCDS Home
- This Issue
-
Next Article
Existence and regularity of solutions in nonlinear wave equations
On weak interaction between a ground state and a trapping potential
1. | Department of Mathematics and Geosciences, University of Trieste, via Valerio 12/1 Trieste, 34127, Italy |
2. | Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263-8522, Japan |
References:
[1] |
S. Cuccagna, On the Darboux and Birkhoff steps in the asymptotic stability of solitons,, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197.
|
[2] |
S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Physics, 305 (2011), 279.
doi: 10.1007/s00220-011-1265-2. |
[3] |
S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 366 (2014), 2827.
doi: 10.1090/S0002-9947-2014-05770-X. |
[4] |
S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-trapping potential,, J. Differential Equations, 256 (2014), 1395.
doi: 10.1016/j.jde.2013.11.002. |
[5] |
S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, (). Google Scholar |
[6] |
S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearization of the NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1.
doi: 10.1002/cpa.20050. |
[7] |
K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities,, Comm. Partial Differential Equations, 34 (2009), 1074.
doi: 10.1080/03605300903076831. |
[8] |
P. Deift and X. Zhou, Perturbation theory for infinite-dimensional integrable systems on the line. A case study,, Acta Math., 188 (2002), 163.
doi: 10.1007/BF02392683. |
[9] |
M. Grillakis, J. Shatah and W. Strauss, Stability of solitary waves in the presence of symmetries, I,, Jour. Funct. An., 74 (1987), 160.
doi: 10.1016/0022-1236(87)90044-9. |
[10] |
S. Gustafson, K. Nakanishi and T. P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves,, Int. Math. Res. Not., 66 (2004), 3559.
doi: 10.1155/S1073792804132340. |
[11] |
J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Physics, 274 (2007), 187.
doi: 10.1007/s00220-007-0261-z. |
[12] |
J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, J. Nonlinear Sci., 17 (2007), 349.
doi: 10.1007/s00332-006-0807-9. |
[13] |
Y. Martel and F. Merle, Review of long time asymptotics and collision of solitons for the quartic generalized Korteweg-de Vries equation,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287.
doi: 10.1017/S030821051000003X. |
[14] |
Y. Martel, F. Merle and T. P. Tsai, Stability in $H^1$ of the sum of K solitary waves for some nonlinear Schrödinger equations,, Duke Math. J., 133 (2006), 405.
doi: 10.1215/S0012-7094-06-13331-8. |
[15] |
G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1,, Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357.
doi: 10.1016/j.anihpc.2011.02.002. |
[16] |
G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations,, Math. Res. Lett., 16 (2009), 477.
doi: 10.4310/MRL.2009.v16.n3.a8. |
[17] |
G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Comm. Partial Diff., 29 (2004), 1051.
doi: 10.1081/PDE-200033754. |
[18] |
I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models,, Comm. Pure Appl. Math., 58 (2005), 149.
doi: 10.1002/cpa.20066. |
[19] |
I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, (). Google Scholar |
[20] |
M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.
doi: 10.1002/cpa.3160390103. |
show all references
References:
[1] |
S. Cuccagna, On the Darboux and Birkhoff steps in the asymptotic stability of solitons,, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197.
|
[2] |
S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Physics, 305 (2011), 279.
doi: 10.1007/s00220-011-1265-2. |
[3] |
S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 366 (2014), 2827.
doi: 10.1090/S0002-9947-2014-05770-X. |
[4] |
S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-trapping potential,, J. Differential Equations, 256 (2014), 1395.
doi: 10.1016/j.jde.2013.11.002. |
[5] |
S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, (). Google Scholar |
[6] |
S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearization of the NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1.
doi: 10.1002/cpa.20050. |
[7] |
K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities,, Comm. Partial Differential Equations, 34 (2009), 1074.
doi: 10.1080/03605300903076831. |
[8] |
P. Deift and X. Zhou, Perturbation theory for infinite-dimensional integrable systems on the line. A case study,, Acta Math., 188 (2002), 163.
doi: 10.1007/BF02392683. |
[9] |
M. Grillakis, J. Shatah and W. Strauss, Stability of solitary waves in the presence of symmetries, I,, Jour. Funct. An., 74 (1987), 160.
doi: 10.1016/0022-1236(87)90044-9. |
[10] |
S. Gustafson, K. Nakanishi and T. P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves,, Int. Math. Res. Not., 66 (2004), 3559.
doi: 10.1155/S1073792804132340. |
[11] |
J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Physics, 274 (2007), 187.
doi: 10.1007/s00220-007-0261-z. |
[12] |
J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, J. Nonlinear Sci., 17 (2007), 349.
doi: 10.1007/s00332-006-0807-9. |
[13] |
Y. Martel and F. Merle, Review of long time asymptotics and collision of solitons for the quartic generalized Korteweg-de Vries equation,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287.
doi: 10.1017/S030821051000003X. |
[14] |
Y. Martel, F. Merle and T. P. Tsai, Stability in $H^1$ of the sum of K solitary waves for some nonlinear Schrödinger equations,, Duke Math. J., 133 (2006), 405.
doi: 10.1215/S0012-7094-06-13331-8. |
[15] |
G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1,, Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357.
doi: 10.1016/j.anihpc.2011.02.002. |
[16] |
G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations,, Math. Res. Lett., 16 (2009), 477.
doi: 10.4310/MRL.2009.v16.n3.a8. |
[17] |
G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Comm. Partial Diff., 29 (2004), 1051.
doi: 10.1081/PDE-200033754. |
[18] |
I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models,, Comm. Pure Appl. Math., 58 (2005), 149.
doi: 10.1002/cpa.20066. |
[19] |
I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, (). Google Scholar |
[20] |
M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.
doi: 10.1002/cpa.3160390103. |
[1] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[2] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[3] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[6] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[7] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[8] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[9] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[10] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[11] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[12] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[13] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[14] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[15] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[16] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[17] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[18] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[19] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[20] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]