August  2015, 35(8): 3343-3376. doi: 10.3934/dcds.2015.35.3343

On weak interaction between a ground state and a trapping potential

1. 

Department of Mathematics and Geosciences, University of Trieste, via Valerio 12/1 Trieste, 34127, Italy

2. 

Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263-8522, Japan

Received  April 2014 Revised  December 2014 Published  February 2015

We continue our study initiated in [4] of the interaction of a ground state with a potential considering here a class of trapping potentials. We track the precise asymptotic behavior of the solution if the interaction is weak, either because the ground state moves away from the potential or is very fast.
Citation: Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343
References:
[1]

S. Cuccagna, On the Darboux and Birkhoff steps in the asymptotic stability of solitons,, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197.   Google Scholar

[2]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Physics, 305 (2011), 279.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[3]

S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 366 (2014), 2827.  doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[4]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-trapping potential,, J. Differential Equations, 256 (2014), 1395.  doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[5]

S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, ().   Google Scholar

[6]

S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearization of the NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1.  doi: 10.1002/cpa.20050.  Google Scholar

[7]

K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities,, Comm. Partial Differential Equations, 34 (2009), 1074.  doi: 10.1080/03605300903076831.  Google Scholar

[8]

P. Deift and X. Zhou, Perturbation theory for infinite-dimensional integrable systems on the line. A case study,, Acta Math., 188 (2002), 163.  doi: 10.1007/BF02392683.  Google Scholar

[9]

M. Grillakis, J. Shatah and W. Strauss, Stability of solitary waves in the presence of symmetries, I,, Jour. Funct. An., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[10]

S. Gustafson, K. Nakanishi and T. P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves,, Int. Math. Res. Not., 66 (2004), 3559.  doi: 10.1155/S1073792804132340.  Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Physics, 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, J. Nonlinear Sci., 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[13]

Y. Martel and F. Merle, Review of long time asymptotics and collision of solitons for the quartic generalized Korteweg-de Vries equation,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287.  doi: 10.1017/S030821051000003X.  Google Scholar

[14]

Y. Martel, F. Merle and T. P. Tsai, Stability in $H^1$ of the sum of K solitary waves for some nonlinear Schrödinger equations,, Duke Math. J., 133 (2006), 405.  doi: 10.1215/S0012-7094-06-13331-8.  Google Scholar

[15]

G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1,, Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357.  doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[16]

G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations,, Math. Res. Lett., 16 (2009), 477.  doi: 10.4310/MRL.2009.v16.n3.a8.  Google Scholar

[17]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Comm. Partial Diff., 29 (2004), 1051.  doi: 10.1081/PDE-200033754.  Google Scholar

[18]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models,, Comm. Pure Appl. Math., 58 (2005), 149.  doi: 10.1002/cpa.20066.  Google Scholar

[19]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, ().   Google Scholar

[20]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

show all references

References:
[1]

S. Cuccagna, On the Darboux and Birkhoff steps in the asymptotic stability of solitons,, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197.   Google Scholar

[2]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Physics, 305 (2011), 279.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[3]

S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 366 (2014), 2827.  doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[4]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-trapping potential,, J. Differential Equations, 256 (2014), 1395.  doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[5]

S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, ().   Google Scholar

[6]

S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearization of the NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1.  doi: 10.1002/cpa.20050.  Google Scholar

[7]

K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities,, Comm. Partial Differential Equations, 34 (2009), 1074.  doi: 10.1080/03605300903076831.  Google Scholar

[8]

P. Deift and X. Zhou, Perturbation theory for infinite-dimensional integrable systems on the line. A case study,, Acta Math., 188 (2002), 163.  doi: 10.1007/BF02392683.  Google Scholar

[9]

M. Grillakis, J. Shatah and W. Strauss, Stability of solitary waves in the presence of symmetries, I,, Jour. Funct. An., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[10]

S. Gustafson, K. Nakanishi and T. P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves,, Int. Math. Res. Not., 66 (2004), 3559.  doi: 10.1155/S1073792804132340.  Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Physics, 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, J. Nonlinear Sci., 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[13]

Y. Martel and F. Merle, Review of long time asymptotics and collision of solitons for the quartic generalized Korteweg-de Vries equation,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287.  doi: 10.1017/S030821051000003X.  Google Scholar

[14]

Y. Martel, F. Merle and T. P. Tsai, Stability in $H^1$ of the sum of K solitary waves for some nonlinear Schrödinger equations,, Duke Math. J., 133 (2006), 405.  doi: 10.1215/S0012-7094-06-13331-8.  Google Scholar

[15]

G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1,, Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357.  doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[16]

G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations,, Math. Res. Lett., 16 (2009), 477.  doi: 10.4310/MRL.2009.v16.n3.a8.  Google Scholar

[17]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Comm. Partial Diff., 29 (2004), 1051.  doi: 10.1081/PDE-200033754.  Google Scholar

[18]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models,, Comm. Pure Appl. Math., 58 (2005), 149.  doi: 10.1002/cpa.20066.  Google Scholar

[19]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, ().   Google Scholar

[20]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[2]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[6]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[7]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[8]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[12]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[13]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[14]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[15]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[16]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[20]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]