August  2015, 35(8): 3377-3392. doi: 10.3934/dcds.2015.35.3377

On a fractional harmonic replacement

1. 

Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

2. 

Weierstraß Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

Received  November 2014 Revised  November 2014 Published  February 2015

Given $s\in(0,1)$, we consider the problem of minimizing the fractional Gagliardo seminorm in $H^s$ with prescribed condition outside the ball and under the further constraint of attaining zero value in a given set $K$.
    We investigate how the energy changes in dependence of such set. In particular, under mild regularity conditions, we show that adding a set $A$ to $K$ increases the energy of at most the measure of $A$ (this may be seen as a perturbation result for small sets $A$).
    Also, we point out a monotonicity feature of the energy with respect to the prescribed sets and the boundary conditions.
Citation: Serena Dipierro, Enrico Valdinoci. On a fractional harmonic replacement. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3377-3392. doi: 10.3934/dcds.2015.35.3377
References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig and S. Salsa, An area-Dirichlet integral minimization problem, Commun. Pure Appl. Math., 54 (2001), 479-499. doi: 10.1002/1097-0312(200104)54:4<479::AID-CPA3>3.0.CO;2-2.

[2]

L. Caffarelli, O. Savin and E. Valdinoci, Minimization of a fractional perimeter-Dirichlet integral functional, Ann. Inst. H. Poincaré Anal. Non Linéaire, doi:10.1016/j.anihpc.2014.04.004, available at http://www.sciencedirect.com/science/article/pii/S0294144914000389 doi: 10.1016/j.anihpc.2014.04.004.

[3]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[4]

S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387. doi: 10.1080/03605302.2014.914536.

[5]

J. Jost, Partial Differential Equations. 3rd Revised and Expanded ed, Graduate Texts in Mathematics, 214. Springer, New York, 2013. xiv+410 pp. doi: 10.1007/978-1-4614-4809-9.

[6]

Y. J. Park, Fractional Polya-Szegö inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271.

[7]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[8]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154. doi: 10.5565/PUBLMAT_58114_06.

[9]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., S$\vec e$MA, 49 (2009), 33-44.

show all references

References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig and S. Salsa, An area-Dirichlet integral minimization problem, Commun. Pure Appl. Math., 54 (2001), 479-499. doi: 10.1002/1097-0312(200104)54:4<479::AID-CPA3>3.0.CO;2-2.

[2]

L. Caffarelli, O. Savin and E. Valdinoci, Minimization of a fractional perimeter-Dirichlet integral functional, Ann. Inst. H. Poincaré Anal. Non Linéaire, doi:10.1016/j.anihpc.2014.04.004, available at http://www.sciencedirect.com/science/article/pii/S0294144914000389 doi: 10.1016/j.anihpc.2014.04.004.

[3]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[4]

S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387. doi: 10.1080/03605302.2014.914536.

[5]

J. Jost, Partial Differential Equations. 3rd Revised and Expanded ed, Graduate Texts in Mathematics, 214. Springer, New York, 2013. xiv+410 pp. doi: 10.1007/978-1-4614-4809-9.

[6]

Y. J. Park, Fractional Polya-Szegö inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271.

[7]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[8]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154. doi: 10.5565/PUBLMAT_58114_06.

[9]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., S$\vec e$MA, 49 (2009), 33-44.

[1]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[2]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[3]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[4]

Anton Petrunin. Harmonic functions on Alexandrov spaces and their applications. Electronic Research Announcements, 2003, 9: 135-141.

[5]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[6]

Valerii Los, Vladimir Mikhailets, Aleksandr Murach. Parabolic problems in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3605-3636. doi: 10.3934/cpaa.2021123

[7]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[8]

Tomasz Komorowski, Stefano Olla, Marielle Simon. Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities. Kinetic and Related Models, 2018, 11 (3) : 615-645. doi: 10.3934/krm.2018026

[9]

Gershon Kresin, Vladimir Maz’ya. Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 425-440. doi: 10.3934/dcds.2010.28.425

[10]

Juan L. G. Guirao, Alain Miranville. The replacement of the retracted preface. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : iii-iv. doi: 10.3934/dcdss.2020320

[11]

Carsten Burstedde. On the numerical evaluation of fractional Sobolev norms. Communications on Pure and Applied Analysis, 2007, 6 (3) : 587-605. doi: 10.3934/cpaa.2007.6.587

[12]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[13]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[14]

Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305

[15]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[16]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure and Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[17]

Shiping Cao, Shuangping Li, Robert S. Strichartz, Prem Talwai. A trace theorem for Sobolev spaces on the Sierpinski gasket. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3901-3916. doi: 10.3934/cpaa.2020159

[18]

T. V. Anoop, Nirjan Biswas, Ujjal Das. Admissible function spaces for weighted Sobolev inequalities. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3259-3297. doi: 10.3934/cpaa.2021105

[19]

Doyoon Kim, Kyeong-Hun Kim, Kijung Lee. Parabolic Systems with measurable coefficients in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2587-2613. doi: 10.3934/cpaa.2022062

[20]

Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (146)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]