-
Previous Article
Emergence of phase-locked states for the Winfree model in a large coupling regime
- DCDS Home
- This Issue
-
Next Article
On a fractional harmonic replacement
Multi-bump solutions for Schrödinger equation involving critical growth and potential wells
1. | Department of Mathematics, Tsinghua University, Beijing, 100084 |
2. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875 |
References:
[1] |
A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch.Ration.Mech.Anal., 140 (1997), 285.
doi: 10.1007/s002050050067. |
[2] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch.Ration.Mech.Anal., 159 (2001), 253.
doi: 10.1007/s002050100152. |
[3] |
T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential,, Discrete Contin. Dyn. Syst, 33 (2013), 7.
|
[4] |
T. Bartsch and Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, Z. Angew. Math.Phys., 51 (2000), 366.
doi: 10.1007/PL00001511. |
[5] |
V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}$ in $\mathbbR^N,$, J. Funct. Anal., 88 (1990), 90.
doi: 10.1016/0022-1236(90)90120-A. |
[6] |
J. Byeon and Z. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations,, Arch. Ration. Mech. Anal., 165 (2002), 295.
doi: 10.1007/s00205-002-0225-6. |
[7] |
J. Byeon and Z. Wang, Standing waves with a ciritical frequency for nonlinear Schrödinger equations II,, Calc.Var.P. D. E., 18 (2003), 207.
doi: 10.1007/s00526-002-0191-8. |
[8] |
A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann.Inst.Henri Poincaré, 2 (1985), 463.
|
[9] |
J. Chabrowski and J. Yang, Multiple semilclassical solutions of the Schrödinger equation involving a critical Sobolev exponent,, Portugaliae Mathematica., 57 (2000), 273.
|
[10] |
J. Chabrowski and J. Yang, Existence theorems for the Schrödinger equation involving a critical Sobolev exponent,, Z. Angew. Math. Phys., 49 (1998), 276.
doi: 10.1007/PL00001485. |
[11] |
S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions,, J. Diff.Equat., 160 (2000), 118.
doi: 10.1006/jdeq.1999.3662. |
[12] |
S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations,, Proc. Royal Soc. Edinburgh., 128 (1998), 1249.
doi: 10.1017/S030821050002730X. |
[13] |
M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations,, Ann.Inst.Henri Poincaré, 15 (1998), 127.
doi: 10.1016/S0294-1449(97)89296-7. |
[14] |
M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.
doi: 10.1006/jfan.1996.3085. |
[15] |
Y. Ding and J. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials,, J. Funct. Anal., 251 (2007), 546.
doi: 10.1016/j.jfa.2007.07.005. |
[16] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397.
doi: 10.1016/0022-1236(86)90096-0. |
[17] |
M. Grossi, A nondegeneracy result for a nonlinear elliptic equation,, Nonlinear Differ. Equ. Appl., 12 (2005), 227.
doi: 10.1007/s00030-005-0010-y. |
[18] |
W. M. Ni, X. Pan and I. Takagi, Singular behavior of least energy solutions of a smilinear Neumannn problem involving critcial Sobolev exponents,, Duke Math.J., 67 (1992), 1.
doi: 10.1215/S0012-7094-92-06701-9. |
[19] |
Y.-G. Oh, On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential,, Comm. Math. Phys., 131 (1990), 223.
doi: 10.1007/BF02161413. |
[20] |
Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_a$,, Comm. Part. Diff. Equat., 13 (1988), 1499.
doi: 10.1080/03605308808820585. |
[21] |
O. Rey, The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1.
doi: 10.1016/0022-1236(90)90002-3. |
[22] |
Z. Tang, Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials,, Commun. Pure Appl. Anal., 13 (2014), 237.
doi: 10.3934/cpaa.2014.13.237. |
[23] |
J. Zhang, Z. Chen and W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth,, Preprint., (). Google Scholar |
show all references
References:
[1] |
A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch.Ration.Mech.Anal., 140 (1997), 285.
doi: 10.1007/s002050050067. |
[2] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch.Ration.Mech.Anal., 159 (2001), 253.
doi: 10.1007/s002050100152. |
[3] |
T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential,, Discrete Contin. Dyn. Syst, 33 (2013), 7.
|
[4] |
T. Bartsch and Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, Z. Angew. Math.Phys., 51 (2000), 366.
doi: 10.1007/PL00001511. |
[5] |
V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}$ in $\mathbbR^N,$, J. Funct. Anal., 88 (1990), 90.
doi: 10.1016/0022-1236(90)90120-A. |
[6] |
J. Byeon and Z. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations,, Arch. Ration. Mech. Anal., 165 (2002), 295.
doi: 10.1007/s00205-002-0225-6. |
[7] |
J. Byeon and Z. Wang, Standing waves with a ciritical frequency for nonlinear Schrödinger equations II,, Calc.Var.P. D. E., 18 (2003), 207.
doi: 10.1007/s00526-002-0191-8. |
[8] |
A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann.Inst.Henri Poincaré, 2 (1985), 463.
|
[9] |
J. Chabrowski and J. Yang, Multiple semilclassical solutions of the Schrödinger equation involving a critical Sobolev exponent,, Portugaliae Mathematica., 57 (2000), 273.
|
[10] |
J. Chabrowski and J. Yang, Existence theorems for the Schrödinger equation involving a critical Sobolev exponent,, Z. Angew. Math. Phys., 49 (1998), 276.
doi: 10.1007/PL00001485. |
[11] |
S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions,, J. Diff.Equat., 160 (2000), 118.
doi: 10.1006/jdeq.1999.3662. |
[12] |
S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations,, Proc. Royal Soc. Edinburgh., 128 (1998), 1249.
doi: 10.1017/S030821050002730X. |
[13] |
M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations,, Ann.Inst.Henri Poincaré, 15 (1998), 127.
doi: 10.1016/S0294-1449(97)89296-7. |
[14] |
M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.
doi: 10.1006/jfan.1996.3085. |
[15] |
Y. Ding and J. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials,, J. Funct. Anal., 251 (2007), 546.
doi: 10.1016/j.jfa.2007.07.005. |
[16] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397.
doi: 10.1016/0022-1236(86)90096-0. |
[17] |
M. Grossi, A nondegeneracy result for a nonlinear elliptic equation,, Nonlinear Differ. Equ. Appl., 12 (2005), 227.
doi: 10.1007/s00030-005-0010-y. |
[18] |
W. M. Ni, X. Pan and I. Takagi, Singular behavior of least energy solutions of a smilinear Neumannn problem involving critcial Sobolev exponents,, Duke Math.J., 67 (1992), 1.
doi: 10.1215/S0012-7094-92-06701-9. |
[19] |
Y.-G. Oh, On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential,, Comm. Math. Phys., 131 (1990), 223.
doi: 10.1007/BF02161413. |
[20] |
Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_a$,, Comm. Part. Diff. Equat., 13 (1988), 1499.
doi: 10.1080/03605308808820585. |
[21] |
O. Rey, The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1.
doi: 10.1016/0022-1236(90)90002-3. |
[22] |
Z. Tang, Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials,, Commun. Pure Appl. Anal., 13 (2014), 237.
doi: 10.3934/cpaa.2014.13.237. |
[23] |
J. Zhang, Z. Chen and W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth,, Preprint., (). Google Scholar |
[1] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[2] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[3] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[4] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[5] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[6] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[7] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[8] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[9] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[10] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[11] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[12] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[13] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[14] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[15] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[16] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[17] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[18] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[19] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
[20] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]