-
Previous Article
On the partitions with Sturmian-like refinements
- DCDS Home
- This Issue
-
Next Article
Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows
Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains
1. | Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan |
References:
[1] |
X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.
doi: 10.1088/0951-7715/27/8/1899. |
[2] |
M. Chae, K. Kang, J. Lee and Jihoon, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224. |
[3] |
A. Chertock, K. Fellner, A. Kurganov, A. Lorz and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech., 694 (2012), 155-190.
doi: 10.1017/jfm.2011.534. |
[4] |
R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[5] |
R. Duan and Z. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, (2014), 1833-1852. |
[6] |
M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010), 1437-1453.
doi: 10.3934/dcds.2010.28.1437. |
[7] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683. |
[8] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[9] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028. |
[10] |
S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.
doi: 10.1016/j.jde.2011.02.012. |
[11] |
S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.
doi: 10.3934/dcdsb.2013.18.2569. |
[12] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[13] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R. I., 1968. |
[14] |
T. Li, A. Suen, C. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux term, Math. Models Methods Appl. Sci., 25 (2015), 721-746.
doi: 10.1142/S0218202515500177. |
[15] |
J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[16] |
J. López-Gómez, T. cc and T. Yamada, Non-trivial $\omega$-limit sets and oscillating solutions in a chemotaxis model in $\mathbbR^2$ with critical mass, J. Funct. Anal., 266 (2014), 3455-3507.
doi: 10.1016/j.jfa.2014.01.015. |
[17] |
A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507. |
[18] |
A. Lorz, A coupled Keller-Segel-Stokes model: Global existence for small initial data and blow-up delay, Commun. Math. Sci., 10 (2012), 555-574.
doi: 10.4310/CMS.2012.v10.n2.a7. |
[19] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. |
[20] |
K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. |
[21] |
Y. Seki, Y. Sugiyama and J. J. L. Velázquez, Multiple peak aggregations for the Keller-Segel system, Nonlinearity, 26 (2013), 319-352.
doi: 10.1088/0951-7715/26/2/319. |
[22] |
Y. Shibata and S. Shimizu, On the $L^p$-$L^q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157-209.
doi: 10.1515/CRELLE.2008.013. |
[23] |
H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser-Verlag, Basel, 2001. |
[24] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876. |
[25] |
Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250 (2011), 3047-3087.
doi: 10.1016/j.jde.2011.01.016. |
[26] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[27] |
Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1901-1914.
doi: 10.3934/dcds.2012.32.1901. |
[28] |
Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002. |
[29] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, 1977. |
[30] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[31] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[32] |
M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[33] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[34] |
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal. 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[35] |
C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
show all references
References:
[1] |
X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.
doi: 10.1088/0951-7715/27/8/1899. |
[2] |
M. Chae, K. Kang, J. Lee and Jihoon, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224. |
[3] |
A. Chertock, K. Fellner, A. Kurganov, A. Lorz and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech., 694 (2012), 155-190.
doi: 10.1017/jfm.2011.534. |
[4] |
R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[5] |
R. Duan and Z. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, (2014), 1833-1852. |
[6] |
M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010), 1437-1453.
doi: 10.3934/dcds.2010.28.1437. |
[7] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683. |
[8] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[9] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028. |
[10] |
S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.
doi: 10.1016/j.jde.2011.02.012. |
[11] |
S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.
doi: 10.3934/dcdsb.2013.18.2569. |
[12] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[13] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R. I., 1968. |
[14] |
T. Li, A. Suen, C. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux term, Math. Models Methods Appl. Sci., 25 (2015), 721-746.
doi: 10.1142/S0218202515500177. |
[15] |
J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[16] |
J. López-Gómez, T. cc and T. Yamada, Non-trivial $\omega$-limit sets and oscillating solutions in a chemotaxis model in $\mathbbR^2$ with critical mass, J. Funct. Anal., 266 (2014), 3455-3507.
doi: 10.1016/j.jfa.2014.01.015. |
[17] |
A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507. |
[18] |
A. Lorz, A coupled Keller-Segel-Stokes model: Global existence for small initial data and blow-up delay, Commun. Math. Sci., 10 (2012), 555-574.
doi: 10.4310/CMS.2012.v10.n2.a7. |
[19] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. |
[20] |
K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. |
[21] |
Y. Seki, Y. Sugiyama and J. J. L. Velázquez, Multiple peak aggregations for the Keller-Segel system, Nonlinearity, 26 (2013), 319-352.
doi: 10.1088/0951-7715/26/2/319. |
[22] |
Y. Shibata and S. Shimizu, On the $L^p$-$L^q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157-209.
doi: 10.1515/CRELLE.2008.013. |
[23] |
H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser-Verlag, Basel, 2001. |
[24] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876. |
[25] |
Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250 (2011), 3047-3087.
doi: 10.1016/j.jde.2011.01.016. |
[26] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[27] |
Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1901-1914.
doi: 10.3934/dcds.2012.32.1901. |
[28] |
Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002. |
[29] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, 1977. |
[30] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[31] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[32] |
M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[33] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[34] |
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal. 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[35] |
C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
[1] |
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 |
[2] |
Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022062 |
[3] |
Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, 2021, 29 (5) : 3509-3533. doi: 10.3934/era.2021050 |
[4] |
Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284 |
[5] |
Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure and Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609 |
[6] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[7] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations and Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217 |
[8] |
Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122 |
[9] |
Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 329-349. doi: 10.3934/dcdss.2020019 |
[10] |
Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028 |
[11] |
Frederic Heihoff. Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4703-4719. doi: 10.3934/dcdsb.2020120 |
[12] |
Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 |
[13] |
Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991 |
[14] |
Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure and Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353 |
[15] |
Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235 |
[16] |
Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic and Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015 |
[17] |
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 |
[18] |
Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613 |
[19] |
Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215 |
[20] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]