\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains

Abstract Related Papers Cited by
  • This paper is concerned with degenerate chemotaxis-Navier-Stokes systems with position-dependent sensitivity on a two dimensional bounded domain. It is known that in the case without a position-dependent sensitivity function, Tao-Winkler (2012) constructed a globally bounded weak solution of a chemotaxis-Stokes system with any porous medium diffusion, and Winkler (2012, 2014) succeeded in proving global existence and stabilization of classical solutions to a chemotaxis-Navier-Stokes system with linear diffusion. The present work shows global existence and boundedness of weak solutions to a chemotaxis-Navier-Stokes system with position-dependent sensitivity for any porous medium diffusion.
    Mathematics Subject Classification: Primary: 35Q35; Secondary: 35A01, 35D30, 76D05, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.doi: 10.1088/0951-7715/27/8/1899.

    [2]

    M. Chae, K. Kang, J. Lee and Jihoon, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.doi: 10.1080/03605302.2013.852224.

    [3]

    A. Chertock, K. Fellner, A. Kurganov, A. Lorz and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech., 694 (2012), 155-190.doi: 10.1017/jfm.2011.534.

    [4]

    R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.doi: 10.1080/03605302.2010.497199.

    [5]

    R. Duan and Z. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, (2014), 1833-1852.

    [6]

    M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010), 1437-1453.doi: 10.3934/dcds.2010.28.1437.

    [7]

    M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.

    [8]

    T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.

    [9]

    S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.doi: 10.1016/j.jde.2014.01.028.

    [10]

    S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.doi: 10.1016/j.jde.2011.02.012.

    [11]

    S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.doi: 10.3934/dcdsb.2013.18.2569.

    [12]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [13]

    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R. I., 1968.

    [14]

    T. Li, A. Suen, C. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux term, Math. Models Methods Appl. Sci., 25 (2015), 721-746.doi: 10.1142/S0218202515500177.

    [15]

    J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.doi: 10.1016/j.anihpc.2011.04.005.

    [16]

    J. López-Gómez, T. cc and T. Yamada, Non-trivial $\omega$-limit sets and oscillating solutions in a chemotaxis model in $\mathbbR^2$ with critical mass, J. Funct. Anal., 266 (2014), 3455-3507.doi: 10.1016/j.jfa.2014.01.015.

    [17]

    A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.doi: 10.1142/S0218202510004507.

    [18]

    A. Lorz, A coupled Keller-Segel-Stokes model: Global existence for small initial data and blow-up delay, Commun. Math. Sci., 10 (2012), 555-574.doi: 10.4310/CMS.2012.v10.n2.a7.

    [19]

    T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

    [20]

    K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.

    [21]

    Y. Seki, Y. Sugiyama and J. J. L. Velázquez, Multiple peak aggregations for the Keller-Segel system, Nonlinearity, 26 (2013), 319-352.doi: 10.1088/0951-7715/26/2/319.

    [22]

    Y. Shibata and S. Shimizu, On the $L^p$-$L^q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157-209.doi: 10.1515/CRELLE.2008.013.

    [23]

    H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser-Verlag, Basel, 2001.

    [24]

    Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876.

    [25]

    Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250 (2011), 3047-3087.doi: 10.1016/j.jde.2011.01.016.

    [26]

    Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.doi: 10.1016/j.jde.2011.08.019.

    [27]

    Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1901-1914.doi: 10.3934/dcds.2012.32.1901.

    [28]

    Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178.doi: 10.1016/j.anihpc.2012.07.002.

    [29]

    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, 1977.

    [30]

    R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, 1997.doi: 10.1007/978-1-4612-0645-3.

    [31]

    I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.doi: 10.1073/pnas.0406724102.

    [32]

    M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.doi: 10.1080/03605302.2011.591865.

    [33]

    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. 100 (2013), 748-767.doi: 10.1016/j.matpur.2013.01.020.

    [34]

    M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal. 211 (2014), 455-487.doi: 10.1007/s00205-013-0678-9.

    [35]

    C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.doi: 10.1137/070711505.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return