-
Previous Article
Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source
- DCDS Home
- This Issue
-
Next Article
Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains
On the partitions with Sturmian-like refinements
1. | Institute of Information Theory and Automation, The Academy of Sciences of the Czech Republic, Prague 8, CZ-18208 |
2. | Faculty of Information Technology, Czech Technical University in Prague, Prague 6, CZ-16000, Czech Republic |
References:
[1] |
P. Alessandri, Codages de Rotations et Basses Complexités,, PhD thesis, (1996). Google Scholar |
[2] |
P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words,, Enseign. Math. (2), 44 (1998), 103.
|
[3] |
P. Arnoux, S. Ferenczi and P. Hubert, Trajectories of rotations,, Acta Arith., 87 (1999), 209.
|
[4] |
J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms,, Eur. J. Comb., 18 (1997), 497.
doi: 10.1006/eujc.1996.0110. |
[5] |
P. Dartnell, F. Durand and A. Maass, Orbit equivalence and Kakutani equivalence with Sturmian subshifts,, Studia Math., 142 (2000), 25.
|
[6] |
G. Didier, Combinatoire des codages de rotations,, Acta Arith., 85 (1998), 157.
|
[7] |
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors,, Ergod. Theor. Dyn. Syst., 20 (2000), 1061.
doi: 10.1017/S0143385700000584. |
[8] |
P. N. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics,, Springer-Verlag Berlin Heidelberg, (2002).
doi: 10.1007/b13861. |
[9] |
P. Kůrka, Topological and Symbolic Dynamics,, Société Mathématique de France, (2003).
|
[10] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).
doi: 10.1017/CBO9780511626302. |
[11] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1.
doi: 10.2307/2371431. |
[12] |
V. T. Sós, On the distribution mod 1 of the sequences $n\alpha$,, Ann. Univ. Sci. Budap. Rolando Eötvös, 1 (1958), 127. Google Scholar |
show all references
References:
[1] |
P. Alessandri, Codages de Rotations et Basses Complexités,, PhD thesis, (1996). Google Scholar |
[2] |
P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words,, Enseign. Math. (2), 44 (1998), 103.
|
[3] |
P. Arnoux, S. Ferenczi and P. Hubert, Trajectories of rotations,, Acta Arith., 87 (1999), 209.
|
[4] |
J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms,, Eur. J. Comb., 18 (1997), 497.
doi: 10.1006/eujc.1996.0110. |
[5] |
P. Dartnell, F. Durand and A. Maass, Orbit equivalence and Kakutani equivalence with Sturmian subshifts,, Studia Math., 142 (2000), 25.
|
[6] |
G. Didier, Combinatoire des codages de rotations,, Acta Arith., 85 (1998), 157.
|
[7] |
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors,, Ergod. Theor. Dyn. Syst., 20 (2000), 1061.
doi: 10.1017/S0143385700000584. |
[8] |
P. N. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics,, Springer-Verlag Berlin Heidelberg, (2002).
doi: 10.1007/b13861. |
[9] |
P. Kůrka, Topological and Symbolic Dynamics,, Société Mathématique de France, (2003).
|
[10] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).
doi: 10.1017/CBO9780511626302. |
[11] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1.
doi: 10.2307/2371431. |
[12] |
V. T. Sós, On the distribution mod 1 of the sequences $n\alpha$,, Ann. Univ. Sci. Budap. Rolando Eötvös, 1 (1958), 127. Google Scholar |
[1] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[2] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[3] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[4] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[5] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[6] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[7] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[8] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[9] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[10] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[11] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[12] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[13] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[14] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[15] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[16] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[17] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[18] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[19] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[20] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]